精英家教网 > 高中数学 > 题目详情

已知等比数列项和为,且满足,
(Ⅰ)求数列的通项公式;
(Ⅱ)求的值.

(1);(2)143.

解析试题分析:本题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和及对数式的运算等数学知识,考查思维能力、分析问题解决问题的能力以及计算能力.第一问,法一:利用等比数列的前n项和公式,将展开,组成方程组,两式相除,解出,写出通项公式;法二:利用等比数列的通项公式,又因为,展开,相除,解出,写出通项公式;第二问,先将第一问的结论代入,化简,得到,所以可以证出数列为等差数列,所以利用等差数列的前n项和公式进行求和化简.
试题解析:(1)法一:,整理得,解得
,所以,通项公式为  5分
法二:,得,所以,通项公式为 .    5分
(2)   6分
  12分
考点:1.等比数列的通项公式;2.等比数列的前n项和公式;3.对数式的运算;4.等差数列的前n项和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的前项和为.
(1)求数列的通项公式;
(2)设log2an+1 ,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=4an-3(n∈N*).
(1)证明:数列{an}是等比数列;
(2)若数列{bn}满足bn+1=an+bn(n∈N*),且b1=2,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}中,a1=1,{an}的前n项和Sn满足2Snan+1.
(1)求数列{an}的通项公式;
(2)若存在n∈N*,使得λ,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列{an}满足:|a2a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得≥1?若存在,求m的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是等比数列的前项和,成等差数列,且.
(1)求数列的通项公式;
(2)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列的前项和,已知成等差数列.
(1)求数列的公比和通项
(2)若是递增数列,令,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,数列是首项为,公比也为的等比数列,令
(Ⅰ)若,求数列的前项和
(Ⅱ)当数列中的每一项总小于它后面的项时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列单调递增,.
(Ⅰ)求
(Ⅱ)若,求的最小值.

查看答案和解析>>

同步练习册答案