分析 ①f′(x)=2xex+x2ex=x(x+2)ex,令f′(x)=0,解得x=0,-2,列出表格可得单调性极值.
②由表格可知:函数f(x)在(-2,0)上单调递减,(-∞,-2),(0,+∞)上单调递增,由于函数f(x)=x2ex在区间[t,t+1]上不单调,可得t<-2<t+1或t<0<t+1,解出即可得出.
解答 解:①f′(x)=2xex+x2ex=x(x+2)ex,
令f′(x)=0,解得x=0,-2,
可得:
| x | (-∞,-2) | -2 | (-2,0) | 0 | (0,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
点评 本题主要考查了利用导数研究函数的单调性极值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(2x)min=f(0) | B. | f(2x)max=f(0) | ||
| C. | f(2x)在(-∞,+∞)上递减,无极值 | D. | f(2x)在(-∞,+∞)上递增,无极值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(0,2) | B. | (-∞,-2)∪(2,+∞) | C. | (-2,0)∪(2,+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e2f(-2)>f(0),f(2)>e2f(0) | B. | e2f(-2)<f(0),f(2)<e2f(0) | ||
| C. | e2f(-2)>f(0),f(2)<e2f(0) | D. | e2f(-2)<f(0),f(2)>e2f(0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com