分析 当OA⊥OB,圆心O(0,0)到直线直线l的距离为$\sqrt{2}$,由此利用基本不等式,能求出ab的最大值.
解答 解:直线ax+by=1(a,b都是正实数)与圆x2+y2=4相交于A,B两点,当OA⊥OB(O是坐标点)时,
则圆心到直线的距离d=$\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{2}$,
∴a2+b2=$\frac{1}{2}$,
∴2ab≤a2+b2=$\frac{1}{2}$,∴ab≤$\frac{1}{4}$,
∴ab的最大值为$\frac{1}{4}$,
故答案为:$\frac{1}{4}$.
点评 本题主要考查了直线与圆的位置关系,属于中档试题,本题中OA⊥OB,此时圆心O到直线的距离为$\sqrt{2}$是解答本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 未感冒 | 感冒 | 合计 | |
| 用某种药 | 252 | 248 | 500 |
| 未用某种药 | 224 | 276 | 500 |
| 合计 | 476 | 524 | 1000 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 平行 | B. | 相交但不垂直 | C. | 垂直 | D. | 相交于点(2,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com