精英家教网 > 高中数学 > 题目详情
12.在数列{an}中,已知a1=1,an+1=an+2(其中n∈N*),则a20=39.

分析 根据an+1=an+2可得an+1-an=2,故数列{an}是以2 为公差的等差数列,再根据等差数列的通项公式即可求出a20

解答 解:∵an+1=an+2,
∴an+1-an=2,
∴数列{an}是以2 为公差的等差数列.
∴a20=a1+(20-1)×2=39.
故答案为:39.

点评 本题主要利用等差数列的通项公式求数列的项.解题的关键是要分析出数列{an}是以2为公差的等差数列,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.为了研究一种昆虫的产卵数y和温度x是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:y=C1x2+C2与模型②:y=e${\;}^{{C}_{3}x+{C}_{4}}$作为产卵数y和温度x的回归方程来建立两个变量之间的关系.
温度x/℃20222426283032
产卵数y/个610212464113322
t=x24004845766767849001024
Z=lny1.792.303.043.184.164.735.77
 $\overline{x}$ $\overline{t}$ $\overline{y}$ $\overline{z}$
 26 692 80 3.57
 $\frac{\sum_{i=1}^{7}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}}$ $\frac{\sum_{i=1}^{7}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{7}({t}_{i}-\overline{t})^{2}}$ $\frac{\sum_{i=1}^{7}({z}_{i}-\overline{z})({x}_{i}-\overline{x})}{\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}}$ $\frac{\sum_{i=1}^{7}({z}_{i}-\overline{z})({t}_{i}-\overline{t})}{\sum_{i=1}^{7}({t}_{i}-\overline{t})^{2}}$
 1157.54 0.43 0.32 0.00012
其中ti=xi2,$\overline{t}$=$\sum_{i=1}^{7}{t}_{i}$,zi=lnyi,$\overline{u}$=$\sum_{i=1}^{7}{z}_{i}$,
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=βu+α的斜率和截距的最小二乘估计分别为:β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$.
(1)分别画出y关于t的散点图、z关于x的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).
(2)根据表中数据,分别建立两个模型下建立y关于x的回归方程;并在两个模型下分别估计温度为30℃时的产卵数.(C1,C2,C3,C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(3)若模型①、②的相关指数计算分别为R12=0.82,R22=0.96,请根据相关指数判断哪个模型的拟合效果更好.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|0≤x≤2},B={x∈N|1≤x≤3},则A∩B=(  )
A.{1,2}B.{1,2,3}C.{x|1≤x≤2}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\sqrt{a{x^2}-2ax+1}$的定义域为R,则实数a的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{1-x}{ax}+lnx$在(1,+∞)上是增函数,且a>0.
(Ⅰ)求a的取值范围;
(Ⅱ)求函数g(x)=ln(1+x)-x在[0,+∞)上的最大值;
(Ⅲ)已知a>1,b>0,证明:$\frac{1}{a+b}≤ln\frac{a+b}{b}<\frac{a}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设数列{an}是公比为q的等比数列,且|q|>1.若数列{an}的连续四项构成集合{-72,-32,48,108},则2q的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=1,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1,其中n≥2,n∈N*
(1)求证:数列{an}为等差数列,并求其通项公式;
(2)设bn=$\frac{a_n}{2^n}\;,\;\;{T_n}$为数列{bn}的前n项和,求Tn
(3)设cn=4n+(-1)n-1λ•2an(λ为非零整数,n∈N*),试确定实数λ的值,使得对任意的n∈N*,都有cn+1>cn成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边为a,b,c.已知c2=a2+b2-4bccosC,且A-C=$\frac{π}{2}$.
(Ⅰ)求cosC的值;
(Ⅱ)求cos(B+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xm-$\frac{4}{x}$,且f(4)=3.
(1)求m的值;   
(2)求f(x)的奇偶性.

查看答案和解析>>

同步练习册答案