2£®ÎªÁËÑо¿Ò»ÖÖÀ¥³æµÄ²úÂÑÊýyºÍζÈxÊÇ·ñÓйأ¬ÏÖÊÕ¼¯ÁË7×é¹Û²âÊý¾ÝÁÐÓÚϱíÖУ¬²¢×÷³öÁËÉ¢µãͼ£¬·¢ÏÖÑù±¾µã²¢Ã»Óзֲ¼ÔÚij¸ö´ø×´ÇøÓòÄÚ£¬Á½¸ö±äÁ¿²¢²»³ÊÏßÐÔÏà¹Ø¹ØÏµ£¬ÏÖ·Ö±ðÓÃÄ£ÐÍ¢Ù£ºy=C1x2+C2ÓëÄ£ÐÍ¢Ú£ºy=e${\;}^{{C}_{3}x+{C}_{4}}$×÷Ϊ²úÂÑÊýyºÍζÈxµÄ»Ø¹é·½³ÌÀ´½¨Á¢Á½¸ö±äÁ¿Ö®¼äµÄ¹ØÏµ£®
ζÈx/¡æ20222426283032
²úÂÑÊýy/¸ö610212464113322
t=x24004845766767849001024
Z=lny1.792.303.043.184.164.735.77
 $\overline{x}$ $\overline{t}$ $\overline{y}$ $\overline{z}$
 26 692 80 3.57
 $\frac{\sum_{i=1}^{7}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y£©}}{\sum_{i=1}^{7}£¨{x}_{i}-\overline{x}£©^{2}}$ $\frac{\sum_{i=1}^{7}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{7}£¨{t}_{i}-\overline{t}£©^{2}}$ $\frac{\sum_{i=1}^{7}£¨{z}_{i}-\overline{z}£©£¨{x}_{i}-\overline{x}£©}{\sum_{i=1}^{7}£¨{x}_{i}-\overline{x}£©^{2}}$ $\frac{\sum_{i=1}^{7}£¨{z}_{i}-\overline{z}£©£¨{t}_{i}-\overline{t}£©}{\sum_{i=1}^{7}£¨{t}_{i}-\overline{t}£©^{2}}$
 1157.54 0.43 0.32 0.00012
ÆäÖÐti=xi2£¬$\overline{t}$=$\sum_{i=1}^{7}{t}_{i}$£¬zi=lnyi£¬$\overline{u}$=$\sum_{i=1}^{7}{z}_{i}$£¬
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨u1£¬v1£©£¬£¨u2£¬v2£©£¬¡­£¬£¨un£¬vn£©£¬Æä»Ø¹éÖ±Ïßv=¦Âu+¦ÁµÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ·Ö±ðΪ£º¦Â=$\frac{\sum_{i=1}^{n}£¨{u}_{i}-\overline{u}£©£¨{v}_{i}-\overline{v}£©}{\sum_{i=1}^{n}£¨{u}_{i}-\overline{u}£©^{2}}$£¬¦Á=$\overline{v}$-¦Â$\overline{u}$£®
£¨1£©·Ö±ð»­³öy¹ØÓÚtµÄÉ¢µãͼ¡¢z¹ØÓÚxµÄÉ¢µãͼ£¬¸ù¾ÝÉ¢µãͼÅжÏÄÄÒ»¸öÄ£Ð͸üÊÊÒË×÷Ϊ»Ø¹é·½³ÌÀàÐÍ£¿£¨¸ø³öÅжϼ´¿É£¬²»±ØËµÃ÷ÀíÓÉ£©£®
£¨2£©¸ù¾Ý±íÖÐÊý¾Ý£¬·Ö±ð½¨Á¢Á½¸öÄ£ÐÍϽ¨Á¢y¹ØÓÚxµÄ»Ø¹é·½³Ì£»²¢ÔÚÁ½¸öÄ£ÐÍÏ·ֱð¹À¼ÆÎ¶ÈΪ30¡æÊ±µÄ²úÂÑÊý£®£¨C1£¬C2£¬C3£¬C4Óë¹À¼ÆÖµ¾ù¾«È·µ½Ð¡ÊýµãºóÁ½Î»£©£¨²Î¿¼Êý¾Ý£ºe4.65¡Ö104.58£¬e4.85¡Ö127.74£¬e5.05¡Ö156.02£©
£¨3£©ÈôÄ£ÐÍ¢Ù¡¢¢ÚµÄÏà¹ØÖ¸Êý¼ÆËã·Ö±ðΪR12=0.82£¬R22=0.96£¬Çë¸ù¾ÝÏà¹ØÖ¸ÊýÅжÏÄĸöÄ£Ð͵ÄÄâºÏЧ¹û¸üºÃ£®

·ÖÎö £¨1£©»­³öy¹ØÓÚtµÄÉ¢µãͼºÍz¹ØÓÚxµÄÉ¢µãͼ£¬½áºÏͼÐÎÅжÏÄ£ÐÍ¢Ú¸üÊÊÒË×÷Ϊ»Ø¹é·½³ÌÀàÐÍ£»
£¨2£©¼ÆËãÄ£Ð͢ٵĻعéϵÊý£¬Ð´³ö»Ø¹é·½³Ì£¬Çó³öx=30ʱ$\stackrel{¡Ä}{y}$µÄÖµ£»
¼ÆËãÄ£Ð͢ڵĻعéϵÊý£¬Ð´³ö»Ø¹é·½³Ì£¬Çó³öx=30ʱ$\stackrel{¡Ä}{y}$µÄÖµ¼´¿É£»
£¨3£©¸ù¾Ý${{R}_{1}}^{2}$£¼${{R}_{2}}^{2}$ÅжÏÄ£ÐÍ¢ÚµÄÄâºÏЧ¹û¸üºÃ£®

½â´ð ½â£º£¨1£©»­³öy¹ØÓÚtµÄÉ¢µãͼÈçͼ1£¬
»­³öz¹ØÓÚxµÄÉ¢µãͼÈçͼ2£»
¸ù¾ÝÉ¢µãͼ¿ÉÒÔÅжÏÄ£ÐÍ¢Ú¸üÊÊÒË×÷Ϊ»Ø¹é·½³ÌÀàÐÍ£»
£¨2£©¶ÔÓÚÄ£ÐÍ¢Ù£¬Éèt=x2£¬Ôòy=C1x2+C2=C1t+C2£¬
¼ÆËãC1=$\frac{\sum_{i=1}^{7}{£¨t}_{i}-\overline{t}£©{£¨y}_{i}-\overline{y}£©}{{\sum_{i=1}^{7}{£¨t}_{i}-\overline{t}£©}^{2}}$=0.43£¬
C2=$\overline{y}$-C1$\overline{t}$=80-0.43¡Á692=-217.56£¬
¡àËùÇ󻨹鷽³ÌΪ$\stackrel{¡Ä}{y}$=0.43x2-217.56£¬
µ±x=30ʱ£¬¹À¼ÆÎ¶ÈΪ$\stackrel{¡Ä}{y}$=0.43¡Á302-217.56=169.44£»
¶ÔÓÚÄ£ÐÍ¢Ú£¬Éèy=${e}^{{C}_{1}x{+C}_{2}}$£¬
Ôòz=lny=C3x+C4£¬
¼ÆËãC3=$\frac{\sum_{i=1}^{7}{£¨z}_{i}-\overline{z}£©{£¨x}_{i}-\overline{x}£©}{{\sum_{i=1}^{7}{£¨x}_{i}-\overline{x}£©}^{2}}$=0.32£¬
C4=$\overline{z}$-C3$\overline{x}$=3.57-0.32¡Á26=-4.75£¬
¡àËùÇ󻨹鷽³ÌΪ$\stackrel{¡Ä}{z}$=0.32x-4.75£¬
¼´$\stackrel{¡Ä}{y}$=e0.32x-4.75£»
µ±x=30ʱ£¬¹À¼ÆÎ¶ÈΪ$\stackrel{¡Ä}{y}$=e0.32¡Á30-4.75¡Ö127.74£»
£¨3£©¡ßR12=0.82£¬R22=0.96£¬
¡à${{R}_{1}}^{2}$£¼${{R}_{2}}^{2}$£¬
¡àÄ£ÐÍ¢ÚµÄÄâºÏЧ¹û¸üºÃ£®

µãÆÀ ±¾Ì⿼²éÁËÉ¢µãͼÒÔ¼°»Ø¹é·½³ÌºÍÏà¹ØÖ¸ÊýµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁË·ÖÎöÓëÅжÏÄÜÁ¦µÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÎªÁ˳«µ¼½¡¿µ¡¢µÍ̼¡¢ÂÌÉ«µÄÉú»îÀíÄijÊн¨Á¢Á˹«¹²×ÔÐгµ·þÎñϵͳ£¬¹ÄÀøÊÐÃñ×âÓù«¹²×ÔÐгµ³öÐУ¬¹«¹²×ÔÐгµ°´Ã¿³µÃ¿´ÎµÄ×âÓÃʱ¼ä½øÐÐÊÕ·Ñ£¬¾ßÌåÊշѱê×¼ÈçÏ£º
¢Ù×âÓÃʱ¼ä²»³¬¹ý1Сʱ£¬Ãâ·Ñ£»
¢Ú×âÓÃʱ¼äΪ1СʱÒÔÉÏÇÒ²»³¬¹ý2Сʱ£¬ÊÕ·Ñ1Ôª£»
¢Û×âÓÃʱ¼äΪ2СʱÒÔÉÏÇÒ²»³¬¹ý3Сʱ£¬ÊÕ·Ñ2Ôª£»
¢Ü×âÓÃʱ¼ä³¬¹ý3Сʱ£¬°´Ã¿Ð¡Ê±2ÔªÊÕ·Ñ£¨²»×ãһСʱµÄ²¿·Ö°´1Сʱ¼ÆË㣩
¼×¡¢ÒÒÁ½È˶ÀÁ¢³öÐУ¬¸÷×âÓù«¹²×ÔÐгµÒ»´Î£¬Á½ÈË×⳵ʱ¼ä¶¼²»»á³¬¹ý3Сʱ£¬Éè¼×¡¢ÒÒ×âÓÃʱ¼ä²»³¬¹ýһСʱµÄ¸ÅÂÊ·Ö±ðÊÇ0.5ºÍ0.6£»×âÓÃʱ¼äΪ1СʱÒÔÉÏÇÒ²»³¬¹ý2СʱµÄ¸ÅÂÊ·Ö±ðÊÇ0.4ºÍ0.2£®
£¨¢ñ£©Çó¼×¡¢ÒÒÁ½ÈËËù¸¶×â³µ·ÑÏàͬµÄ¸ÅÂÊ£»
£¨¢ò£©Éè¼×¡¢ÒÒÁ½ÈËËù¸¶×â³µ·ÑÖ®ºÍÎªËæ»ú±äÁ¿¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE¦Î£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÈýÀâÖùABC-A1B1C1ÖУ¬¸÷Àⳤ¾ùÏàµÈ£¬D£¬E£¬F·Ö±ðΪÀâAB£¬BC£¬A1C1µÄÖе㣮
£¨¢ñ£©Ö¤Ã÷EF¡ÎÆ½ÃæA1CD£»
£¨¢ò£©ÈôÈýÀâÖùABC-A1B1C1ΪֱÀâÖù£¬ÇóÖ±ÏßBCÓëÆ½ÃæA1CDËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÉèʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y¡Ý0}\\{3x-y-2¡Ü0}\\{x¡Ý0£¬y¡Ý0}\end{array}\right.$ÈôÄ¿±êº¯Êýz=ax+by£¨a£¾0£¬b£¾0£©µÄ×î´óֵΪ2£¬¼ÇmΪ$\frac{1}{a}$+$\frac{1}{b}$µÄ×îСֵ£¬Ôòy=sin£¨mx+$\frac{¦Ð}{3}$£©µÄ×îСÕýÖÜÆÚΪ¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬µãF1£¬F2ÊÇÍÖÔ²EµÄ×ó¡¢ÓÒ½¹µã£¬PÊÇÍÖÔ²ÉÏÒ»µã£¬¡ÏF1PF2=$\frac{¦Ð}{2}$ÇÒ¡÷F1PF2µÄÃæ»ýΪ3£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ±ê×¼·½³Ì£»
£¨¢ò£©¶¯µãMÔÚÍÖÔ²EÉÏ£¬¶¯µãNÔÚÖ±Ïßl£ºy=2$\sqrt{3}$ÉÏ£¬ÈôOM¡ÍON£¬ÇóÖ¤£ºÔ­µãOµ½Ö±ÏßMNµÄ¾àÀëÊǶ¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¶Ôº¯Êýf£¨x£©£¬Èç¹û´æÔÚx0¡Ù0ʹµÃf£¨x0£©=-f£¨-x0£©£¬Ôò³Æ£¨x0£¬f£¨x0£©£©Ó루-x0£¬f£¨-x0£©£©Îªº¯ÊýͼÏóµÄÒ»×鯿¶Ô³Æµã£®Èôf£¨x£©=ex-a£¨eΪ×ÔÈ»ÊýµÄµ×Êý£©´æÔÚÆæ¶Ô³Æµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1£©B£®£¨1£¬+¡Þ£©C£®£¨e£¬+¡Þ£©D£®[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¡°Î¢ÐÅÇÀºì°ü¡±×Ô2015ÄêÒÔÀ´Òì³£»ð±¬£¬ÔÚij¸ö΢ÐÅȺij´Î½øÐеÄÇÀºì°ü»î¶¯ÖУ¬ÈôËù·¢ºì°üµÄ×ܽð¶îΪ9Ôª£¬±»Ëæ»ú·ÖÅäΪ1.49Ôª£¬1.31Ôª£¬2.19Ôª£¬3.40Ôª£¬0.61Ôª£¬¹²5·Ý£¬¹©¼×¡¢ÒÒµÈ5ÈËÇÀ£¬Ã¿ÈËÖ»ÄÜÇÀÒ»´Î£¬Ôò¼×¡¢ÒÒ¶þÈËÇÀµ½µÄ½ð¶îÖ®ºÍ²»µÍÓÚ4ÔªµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{2}{5}$B£®$\frac{1}{2}$C£®$\frac{3}{4}$D£®$\frac{5}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=a+£¨bx-1£©ex£¬£¨a£¬b¡ÊR£©
£¨1£©ÈçÇúÏßy=f£¨x£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³ÌΪy=x£¬Çóa£¬bµÄÖµ£»
£¨2£©Èôa£¼1£¬b=2£¬¹ØÓÚxµÄ²»µÈʽf£¨x£©£¼axµÄÕûÊý½âÓÐÇÒÖ»ÓÐÒ»¸ö£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚÊýÁÐ{an}ÖУ¬ÒÑÖªa1=1£¬an+1=an+2£¨ÆäÖÐn¡ÊN*£©£¬Ôòa20=39£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸