精英家教网 > 高中数学 > 题目详情
3.设集合A={x|0≤x≤2},B={x∈N|1≤x≤3},则A∩B=(  )
A.{1,2}B.{1,2,3}C.{x|1≤x≤2}D.{x|0≤x≤3}

分析 化简集合B,根据交集的定义写出A∩B.

解答 解:集合A={x|0≤x≤2},
B={x∈N|1≤x≤3}={1,2,3},
则A∩B={1,2}.
故选:A.

点评 本题考查了集合的化简与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,三棱柱ABC-A1B1C1中,各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明EF∥平面A1CD;
(Ⅱ)若三棱柱ABC-A1B1C1为直棱柱,求直线BC与平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为9元,被随机分配为1.49元,1.31元,2.19元,3.40元,0.61元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是(  )
A.$\frac{2}{5}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=a+(bx-1)ex,(a,b∈R)
(1)如曲线y=f(x)在点(0,f(0))处的切线方程为y=x,求a,b的值;
(2)若a<1,b=2,关于x的不等式f(x)<ax的整数解有且只有一个,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x,y满足条件$\left\{\begin{array}{l}3x+y+3≥0\\ 2x-y+2≤0\\ x+2y-4≤0\end{array}\right.$,则z=x2+y2的取值范围为(  )
A.[1,13]B.[1,4]C.$[{\frac{4}{5},13}]$D.$[{\frac{4}{5},4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知复数z满足(3+2i)z=13i,则z所对应的点位于复平面的第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3-x2+bx(a,b∈R),f'(x)为其导函数,且x=3时f(x)有极小值-9.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)若g(x)=f'(x)+(6m-8)x+4,h(x)=mx,当m>0时,对于任意x,g(x)和h(x)的值至少有一个是正数,求实数m的取值范围;
(Ⅲ)若不等式f'(x)>k(xlnx-1)-3x-4(k为正整数)对任意正实数x恒成立,求k的最大值.(注:ln2≈0.69,ln3≈1.10,ln5≈1.61)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,已知a1=1,an+1=an+2(其中n∈N*),则a20=39.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知,平行四边形ABCD中,∠DAB=60°,AB=2AD=4EF=4ED=4,EF∥AD,AF=$\sqrt{2}$,M、N分别为线段AB、DE的中点
(Ⅰ)求证:MN∥平面BCEF;
(Ⅱ)求证:平面ADEF⊥平面DEB;
(Ⅲ)若MN=4,求直线MN与平面BDE所成角的正弦值.

查看答案和解析>>

同步练习册答案