精英家教网 > 高中数学 > 题目详情
18.已知实数x,y满足条件$\left\{\begin{array}{l}3x+y+3≥0\\ 2x-y+2≤0\\ x+2y-4≤0\end{array}\right.$,则z=x2+y2的取值范围为(  )
A.[1,13]B.[1,4]C.$[{\frac{4}{5},13}]$D.$[{\frac{4}{5},4}]$

分析 根据已知的约束条件画出满足约束条件的可行域,再用图象判断,求出目标函数的最大值.

解答 解:$\left\{\begin{array}{l}3x+y+3≥0\\ 2x-y+2≤0\\ x+2y-4≤0\end{array}\right.$的可行域如图所示,其中A(-1,0),B(-2,3),C(0,2),
若目标函数z=x2+y2的几何意义是可行域内的点到坐标原点距离的平方.由图形可知仅在点B(-2,3)取得最大值,z=4+9=13.
由图知,原点到直线2x-y+2=0的距离最小,d=$\frac{2}{\sqrt{5}}$,
可得z=x2+y2=d2=$\frac{4}{5}$.
则z=x2+y2的取值范围为[$\frac{4}{5}$,13],
故选:C.

点评 用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.判断几何意义,最后比较,即可得到目标函数的最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°.F为PA中点,PD=$\sqrt{2}$,AB=AD=$\frac{1}{2}$CD=1. 四边形PDCE为矩形,线段PC交DE于点N.
(Ⅰ)求证:AC∥平面DEF;
(Ⅱ)求二面角A-BC-P的大小;
(Ⅲ)在线段EF上是否存在一点Q,使得BQ与平面BCP所成角的大小为$\frac{π}{6}$?若存在,求出Q点所在的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=xlnx-aex(e为自然对数的底数)有两个极值点,则实数a的取值范围是(  )
A.$({0,\frac{1}{e}})$B.(0,e)C.$({\frac{1}{e},e})$D.(-∞,e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义[x]表示不超过的最大整数,如[2]=2,[2,2]=2,执行如图所示的程序框图,则输出S=(  )
A.1991B.2000C.2007D.2008

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在直角三角形△ABC中,$C=\frac{π}{2}$,$|{\overrightarrow{AC}}|=3$,对平面内的任意一点M,平面内有一点D使得$3\overrightarrow{MD}=\overrightarrow{MB}+2\overrightarrow{MA}$,则$\overrightarrow{CD}•\overrightarrow{CA}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|0≤x≤2},B={x∈N|1≤x≤3},则A∩B=(  )
A.{1,2}B.{1,2,3}C.{x|1≤x≤2}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x,y为正实数,则$\frac{2x}{x+2y}+\frac{x+y}{x}$的最小值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{1-x}{ax}+lnx$在(1,+∞)上是增函数,且a>0.
(Ⅰ)求a的取值范围;
(Ⅱ)求函数g(x)=ln(1+x)-x在[0,+∞)上的最大值;
(Ⅲ)已知a>1,b>0,证明:$\frac{1}{a+b}≤ln\frac{a+b}{b}<\frac{a}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱锥P-ABC中,PB⊥面ABC,△ABC是直角三角形,∠ABC=90°,AB=BC=2,∠PAB=45°,点D、E、F分别为AC、AB、BC的中点.
(1)求证:EF⊥PD;
(2)求直线PF与平面PBD所成的角的正弦值.

查看答案和解析>>

同步练习册答案