精英家教网 > 高中数学 > 题目详情
10.已知x,y为正实数,则$\frac{2x}{x+2y}+\frac{x+y}{x}$的最小值为$\frac{5}{2}$.

分析 由x,y为正实数,可得$\frac{2x}{x+2y}+\frac{x+y}{x}$=$\frac{2}{1+\frac{2y}{x}}$+$\frac{y}{x}$+1,令$\frac{y}{x}$=t>0,则f(t)=$\frac{2}{1+2t}$+t+1=$\frac{1}{t+\frac{1}{2}}$+t+$\frac{1}{2}$+$\frac{1}{2}$,利用基本不等式求出最小值即可.

解答 解:∵x,y为正实数,
∴$\frac{2x}{x+2y}+\frac{x+y}{x}$=$\frac{2}{1+\frac{2y}{x}}$+$\frac{y}{x}$+1,
令$\frac{y}{x}$=t>0,则f(t)=$\frac{2}{1+2t}$+t+1=$\frac{1}{t+\frac{1}{2}}$+t+$\frac{1}{2}$+$\frac{1}{2}$≥2+$\frac{1}{2}$=$\frac{5}{2}$
可知:当$\frac{1}{t+\frac{1}{2}}$=t+$\frac{1}{2}$即t=$\frac{1}{2}$时,函数f(t)取得最小值$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.

点评 本题考查了换元法和基本不等式求最小值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.阅读如图所示的程序框图,运行相应的程序,则输出S的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}对任意的n∈N*都有an+1=an-2an+1an,若${a_1}=\frac{1}{2}$,则a8=$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x,y满足条件$\left\{\begin{array}{l}3x+y+3≥0\\ 2x-y+2≤0\\ x+2y-4≤0\end{array}\right.$,则z=x2+y2的取值范围为(  )
A.[1,13]B.[1,4]C.$[{\frac{4}{5},13}]$D.$[{\frac{4}{5},4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知下列说法:
①命题“若x=0或y=0则xy=0”的否命题为“若x≠0或y≠0则xy≠0”;
②“a=2”是“直线ax+4y+1=0与直线ax-y-3=0垂直”的充要条件;
③命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”;
④函数f(x)=ex+x的零点在区间(-1,0)内.
其中正确说法的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3-x2+bx(a,b∈R),f'(x)为其导函数,且x=3时f(x)有极小值-9.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)若g(x)=f'(x)+(6m-8)x+4,h(x)=mx,当m>0时,对于任意x,g(x)和h(x)的值至少有一个是正数,求实数m的取值范围;
(Ⅲ)若不等式f'(x)>k(xlnx-1)-3x-4(k为正整数)对任意正实数x恒成立,求k的最大值.(注:ln2≈0.69,ln3≈1.10,ln5≈1.61)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x>0,y>0,且x+16y=xy,则x+y的最小值为25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设二次函数f(x)=ax2+bx+c(a,b,c为常数).若不等式f(x)≥2ax+b的解集为R,则$\frac{b^2}{{{a^2}+{c^2}}}$的最大值为2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在三角形ABC中,AD⊥BC,AD=1,BC=4,点E为AC的中点,$\overrightarrow{DC}•\overrightarrow{BE}$=$\frac{15}{2}$,则AB的长度为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案