分析 根据题意,画出图形,结合图形建立平面直角坐标系,利用坐标表示$\overrightarrow{DC}$•$\overrightarrow{BE}$,从而求出AB的长度.
解答 解:以D为原点,以BC,AD所在直线为x,y轴,
建立平面直角坐标系,如图所示;![]()
设BD=x,则CD=4-x,
D(0,0),A(0,1),B(-x,0),
C(4-x,0),E(2-$\frac{x}{2}$,$\frac{1}{2}$);
∴$\overrightarrow{DC}$=(4-x,0),$\overrightarrow{BE}$=(2+$\frac{x}{2}$,$\frac{1}{2}$),
∴$\overrightarrow{DC}$•$\overrightarrow{BE}$=(4-x)(2+$\frac{x}{2}$)+0×$\frac{1}{2}$=$\frac{15}{2}$,
化简得x2=1,
∵x>0,解得x=1,
∴B(-1,0);
又A(0,1),
∴|AB|=$\sqrt{{1}^{2}{+(-1)}^{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查了平面向量的数量积应用问题,解题时建立平面直角坐标系,利用向量的坐标解决向量问题,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 3 | C. | 5 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 6 | C. | $2\sqrt{3}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com