分析 根据不等式恒大于等于0,求出c≥a,令c=ka(k>1),再根据基本不等式的性质求出代数式的最大值即可.
解答 解:ax2+(b-2a)x+c-b≥0(a>0),
△=(b-2a)2-4a(c-b)≤0,
即b2+4a2-4ac≤0,b2≤4ac-4a2,
∴$\frac{b^2}{{{a^2}+{c^2}}}≤\frac{{4ac-4{a^2}}}{{{a^2}+{c^2}}}$4ac-4a2≤b2,
∴c≥a,
求最大值、不妨令c=ka(k>1)
∴$\frac{{4ac-4{a^2}}}{{{a^2}+{c^2}}}=\frac{{4k{a^2}-4{a^2}}}{{{k^2}{a^2}+{a^2}}}=4\frac{k-1}{{{k^2}+1}}(k>1)$
令k-1=t,$\frac{{4ac-4{a^2}}}{{{a^2}+{c^2}}}=4\frac{t}{{{{(t+1)}^2}+1}}=4\frac{1}{{t+\frac{2}{t}+2}}≤\frac{4}{{2\sqrt{2}+2}}=2\sqrt{2}-2$
即$\frac{b^2}{{{a^2}+{c^2}}}≤2\sqrt{2}-2$,
故答案为:2$\sqrt{2}$-2.
点评 本题考查了二次函数的性质,考查基本不等式的性质以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{1}{e}})$ | B. | (0,e) | C. | $({\frac{1}{e},e})$ | D. | (-∞,e) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 3 | C. | 5 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 6 | C. | $2\sqrt{3}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com