精英家教网 > 高中数学 > 题目详情
14.在等比数列{an}中,已知a1=-1,公比q=2,则该数列前6项的和S6的值为-63.

分析 根据等比数列前n项的和公式进行计算即可.

解答 解:∵{an}是等比数列,a1=-1,公比q=2,
∴${S}_{n}=\frac{{a}_{1}(1-{q}^{n})}{1-q}$,
则${S}_{6}=\frac{-1(1-{2}^{6})}{1-2}=-63$.
故答案为:-63.

点评 本题主要考查等比数列的应用,求出等比数列前n项的和公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2xlnx-(x-a)2
(1)若f(x)在定义域上为单调递减函数,求函数a的取值范围;
(2)是否存在实数a,使得f(x)≤0恒成立且f(x)有唯一零点,若存在,求出满足a∈(n,n+1),n∈Z的n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知下列说法:
①命题“若x=0或y=0则xy=0”的否命题为“若x≠0或y≠0则xy≠0”;
②“a=2”是“直线ax+4y+1=0与直线ax-y-3=0垂直”的充要条件;
③命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”;
④函数f(x)=ex+x的零点在区间(-1,0)内.
其中正确说法的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x>0,y>0,且x+16y=xy,则x+y的最小值为25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知F1,F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,且|F1F2|=2,点$(\sqrt{2},\frac{{\sqrt{6}}}{2})$在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与以原点为圆心,b为半径的圆相切于第一象限,切点为M,且直线l与椭圆交于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值;如不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设二次函数f(x)=ax2+bx+c(a,b,c为常数).若不等式f(x)≥2ax+b的解集为R,则$\frac{b^2}{{{a^2}+{c^2}}}$的最大值为2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ex
(Ⅰ)过原点作曲线y=f(x)的切线,求切线的方程;
(Ⅱ)当x>0时,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3. 如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PA=PB,PA⊥PB,F为CE上的点,且BF⊥平面PAC.
(Ⅰ)求证:平面PAB⊥平面ABCD;
(Ⅱ)求直线PC与平面ABCD所成角的正弦值;
(Ⅲ)在棱PD上是否存在一点G,使GF∥平面PAB,若存在,求PG的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.四棱锥P-ABCD中,底面ABCD是正方形,PB⊥BC,PD⊥CD,E点满足$PE=\frac{1}{3}PD$
(1)求证:PA⊥平面ABCD;
(2)在线段BC上是否存在点F使得PF∥面EAC?若存在,确定F的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案