·ÖÎö £¨¢ñ£©ÓÉ|F1F2|=2£¬µã$£¨\sqrt{2}£¬\frac{{\sqrt{6}}}{2}£©$ÔÚ¸ÃÍÖÔ²ÉÏ£¬Çó³öa=2£¬$b=\sqrt{3}$£¬ÓÉ´ËÄܳöÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÍƵ¼³ö$|P{F_2}|=\frac{1}{2}£¨4-{x_1}£©=2-\frac{1}{2}{x_1}$£®Á¬½ÓOM£¬OP£¬ÓÉÏàÇÐÌõ¼þÍÆµ¼³ö$|PM|=\frac{1}{2}{x_1}$£¬ÓÉ´ËÄÜÇó³ö|F2P|+|F2Q|+|PQ|Ϊ¶¨Öµ£®
½â´ð ½â£º£¨¢ñ£©¡ßF1£¬F2·Ö±ðÊÇÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÁ½¸ö½¹µã£¬![]()
ÇÒ|F1F2|=2£¬µã$£¨\sqrt{2}£¬\frac{{\sqrt{6}}}{2}£©$ÔÚ¸ÃÍÖÔ²ÉÏ£®
ÓÉÌâÒ⣬µÃc=1£¬¼´a2-b2=1£¬¢Ù
ÓÖµã$£¨\sqrt{2}£¬\frac{{\sqrt{6}}}{2}£©$ÔÚ¸ÃÍÖÔ²ÉÏ£¬¡à$\frac{2}{a^2}+\frac{3}{{2{b^2}}}=1$£¬¢Ú
ÓÉ¢Ù¢ÚÁªÁ¢½âµÃa=2£¬$b=\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£®
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
$\frac{{{x_1}^2}}{4}+\frac{{{y_1}^2}}{3}=1£¨|{x_1}|¡Ü2£©$£¬$|P{F_2}{|^2}={£¨{x_1}-1£©^2}+{y_1}^2={£¨{x_1}-1£©^2}+3£¨1-\frac{{{x_1}^2}}{4}£©=\frac{1}{4}{£¨{x_1}-4£©^2}$£¬
¡à$|P{F_2}|=\frac{1}{2}£¨4-{x_1}£©=2-\frac{1}{2}{x_1}$£®
Á¬½ÓOM£¬OP£¬ÓÉÏàÇÐÌõ¼þÖª£º
$|PM{|^2}=|OP{|^2}-|OM{|^2}={x_1}^2+{y_1}^2-3={x_1}^2+3£¨1-\frac{{{x_1}^2}}{4}£©-3=\frac{1}{4}{x_1}^2$£¬
¡à$|PM|=\frac{1}{2}{x_1}$£¬
¡à$|P{F_2}|+|PM|=2-\frac{1}{2}{x_1}+\frac{1}{2}{x_1}=2$£®
ͬÀí¿ÉÇóµÃ$|Q{F_2}|+|QM|=2-\frac{1}{2}{x_2}+\frac{1}{2}{x_2}=2$£¬
¡à|F2P|+|F2Q|+|PQ|=2+2=4Ϊ¶¨Öµ£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÏ߶κÍÊÇ·ñΪ¶¨ÖµµÄÅжÏÓëÇ󷨣¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¡¢¿Õ¼äÏëÏóÄÜÁ¦£¬¿¼²éµÈ¼Ûת»¯Ë¼Ïë¡¢ÊýÐνáºÏ˼Ï룬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $£¨{-¡Þ£¬-\frac{1}{2}}]¡È[{1£¬+¡Þ}£©$ | B£® | $£¨{-¡Þ£¬-1}]¡È[{\frac{1}{2}£¬+¡Þ}£©$ | C£® | $£¨{-¡Þ£¬0}]¡È[{\frac{1}{2}£¬+¡Þ}£©$ | D£® | $£¨{-¡Þ£¬-\frac{1}{2}}]¡È[{0£¬+¡Þ}£©$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ËÄÌõÏß¶Î˳´ÎÊ×βÁ¬½Ó£¬ËùµÃµÄͼÐÎÒ»¶¨ÊÇÆ½ÃæÍ¼ÐÎ | |
| B£® | Ò»ÌõÖ±ÏߺÍÁ½ÌõƽÐÐÖ±Ïß¶¼Ïཻ£¬ÔòÈýÌõÖ±Ïß¹²Ãæ | |
| C£® | Á½Á½Æ½ÐеÄÈýÌõÖ±ÏßÒ»¶¨È·¶¨Èý¸öÆ½Ãæ | |
| D£® | ºÍÁ½ÌõÒìÃæÖ±Ïß¶¼ÏཻµÄÖ±ÏßÒ»¶¨ÊÇÒìÃæÖ±Ïß |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com