9£®ÒÑÖªF1£¬F2·Ö±ðÊÇÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÁ½¸ö½¹µã£¬ÇÒ|F1F2|=2£¬µã$£¨\sqrt{2}£¬\frac{{\sqrt{6}}}{2}£©$ÔÚ¸ÃÍÖÔ²ÉÏ£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëÒÔÔ­µãΪԲÐÄ£¬bΪ°ë¾¶µÄÔ²ÏàÇÐÓÚµÚÒ»ÏóÏÞ£¬ÇеãΪM£¬ÇÒÖ±ÏßlÓëÍÖÔ²½»ÓÚP¡¢QÁ½µã£¬ÎÊ|F2P|+|F2Q|+|PQ|ÊÇ·ñΪ¶¨Öµ£¿Èç¹ûÊÇ£¬Çó³ö¶¨Öµ£»Èç²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉ|F1F2|=2£¬µã$£¨\sqrt{2}£¬\frac{{\sqrt{6}}}{2}£©$ÔÚ¸ÃÍÖÔ²ÉÏ£¬Çó³öa=2£¬$b=\sqrt{3}$£¬ÓÉ´ËÄܳöÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÍƵ¼³ö$|P{F_2}|=\frac{1}{2}£¨4-{x_1}£©=2-\frac{1}{2}{x_1}$£®Á¬½ÓOM£¬OP£¬ÓÉÏàÇÐÌõ¼þÍÆµ¼³ö$|PM|=\frac{1}{2}{x_1}$£¬ÓÉ´ËÄÜÇó³ö|F2P|+|F2Q|+|PQ|Ϊ¶¨Öµ£®

½â´ð ½â£º£¨¢ñ£©¡ßF1£¬F2·Ö±ðÊÇÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÁ½¸ö½¹µã£¬
ÇÒ|F1F2|=2£¬µã$£¨\sqrt{2}£¬\frac{{\sqrt{6}}}{2}£©$ÔÚ¸ÃÍÖÔ²ÉÏ£®
ÓÉÌâÒ⣬µÃc=1£¬¼´a2-b2=1£¬¢Ù
ÓÖµã$£¨\sqrt{2}£¬\frac{{\sqrt{6}}}{2}£©$ÔÚ¸ÃÍÖÔ²ÉÏ£¬¡à$\frac{2}{a^2}+\frac{3}{{2{b^2}}}=1$£¬¢Ú
ÓÉ¢Ù¢ÚÁªÁ¢½âµÃa=2£¬$b=\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£®
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
$\frac{{{x_1}^2}}{4}+\frac{{{y_1}^2}}{3}=1£¨|{x_1}|¡Ü2£©$£¬$|P{F_2}{|^2}={£¨{x_1}-1£©^2}+{y_1}^2={£¨{x_1}-1£©^2}+3£¨1-\frac{{{x_1}^2}}{4}£©=\frac{1}{4}{£¨{x_1}-4£©^2}$£¬
¡à$|P{F_2}|=\frac{1}{2}£¨4-{x_1}£©=2-\frac{1}{2}{x_1}$£®
Á¬½ÓOM£¬OP£¬ÓÉÏàÇÐÌõ¼þÖª£º
$|PM{|^2}=|OP{|^2}-|OM{|^2}={x_1}^2+{y_1}^2-3={x_1}^2+3£¨1-\frac{{{x_1}^2}}{4}£©-3=\frac{1}{4}{x_1}^2$£¬
¡à$|PM|=\frac{1}{2}{x_1}$£¬
¡à$|P{F_2}|+|PM|=2-\frac{1}{2}{x_1}+\frac{1}{2}{x_1}=2$£®
ͬÀí¿ÉÇóµÃ$|Q{F_2}|+|QM|=2-\frac{1}{2}{x_2}+\frac{1}{2}{x_2}=2$£¬
¡à|F2P|+|F2Q|+|PQ|=2+2=4Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÏ߶κÍÊÇ·ñΪ¶¨ÖµµÄÅжÏÓëÇ󷨣¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¡¢¿Õ¼äÏëÏóÄÜÁ¦£¬¿¼²éµÈ¼Ûת»¯Ë¼Ïë¡¢ÊýÐνáºÏ˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=|x-a|+|x-2|£¬x¡ÊR
£¨¢ñ£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©¡ÜaÔÚRÉÏÓн⣬ÇóʵÊýaµÄ×îСֵM£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬ÒÑÖªÕýʵÊým£¬n£¬pÂú×ãm+2n+3p=M£¬Çó$\frac{3}{m}$+$\frac{2}{n}$+$\frac{1}{p}$µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªº¯Êý$f£¨x£©=\frac{f'£¨1£©}{e}{e^x}+\frac{f£¨0£©}{2}{x^2}-x$£¬Èô´æÔÚʵÊýmʹµÃ²»µÈʽf£¨m£©¡Ü2n2-n³ÉÁ¢£¬ÇóʵÊýnµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®$£¨{-¡Þ£¬-\frac{1}{2}}]¡È[{1£¬+¡Þ}£©$B£®$£¨{-¡Þ£¬-1}]¡È[{\frac{1}{2}£¬+¡Þ}£©$C£®$£¨{-¡Þ£¬0}]¡È[{\frac{1}{2}£¬+¡Þ}£©$D£®$£¨{-¡Þ£¬-\frac{1}{2}}]¡È[{0£¬+¡Þ}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈôÕýʵÊýx£¬yÂú×ãx+2y=1£¬Ôòx•yµÄ×î´óֵΪ$\frac{1}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÊýÁÐ{an}Êǵ¥µ÷µÝ¼õµÄµÈ²îÊýÁУ¬S6=S11£¬ÓÐÒÔÏÂËĸö½áÂÛ£º
£¨1£©a9=0
£¨2£©µ±n=8»òn=9ʱ£¬SnÈ¡×î´óÖµ
£¨3£©´æÔÚÕýÕûÊýkʹµÃSk=0
£¨4£©´æÔÚÕýÕûÊýmʹµÃSm=S2m
ÆäÖÐÕýÈ·µÄÊÇ£¨1£©£¬£¨2£©£¬£¨3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÔڵȱÈÊýÁÐ{an}ÖУ¬ÒÑÖªa1=-1£¬¹«±Èq=2£¬Ôò¸ÃÊýÁÐǰ6ÏîµÄºÍS6µÄֵΪ-63£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªA={x|x2-5x+6£¾0}£¬B={x|log2£¨x+1£©£¼2}£®
£¨1£©ÇóA¡ÉB£»
£¨2£©Èô²»µÈʽx2+ax-b£¼0µÄ½â¼¯ÊÇA¡ÉB£¬ÇóʵÊýa£¬bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èô´æÔÚʵÊýx¡Ê[1£¬+¡Þ£©£¬Ê¹|x-a|+x-4¡Ü0³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-2£¬4]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ËÄÌõÏß¶Î˳´ÎÊ×βÁ¬½Ó£¬ËùµÃµÄͼÐÎÒ»¶¨ÊÇÆ½ÃæÍ¼ÐÎ
B£®Ò»ÌõÖ±ÏߺÍÁ½ÌõƽÐÐÖ±Ïß¶¼Ïཻ£¬ÔòÈýÌõÖ±Ïß¹²Ãæ
C£®Á½Á½Æ½ÐеÄÈýÌõÖ±ÏßÒ»¶¨È·¶¨Èý¸öÆ½Ãæ
D£®ºÍÁ½ÌõÒìÃæÖ±Ïß¶¼ÏཻµÄÖ±ÏßÒ»¶¨ÊÇÒìÃæÖ±Ïß

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸