精英家教网 > 高中数学 > 题目详情
15.把3名新生分到甲、乙、丙、丁四个班,每个班至多分配1名且甲班必须分配1名,则不同的分配方法有(  )
A.12种B.15种C.18种D.20种

分析 根据题意,分2步进行分析:①、先在3名新生中任选一人,安排到甲班,②、在剩下的3个班级中任选2个,安排剩下的2名新生,分别求出每一步的情况数目,由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、由于每个班至多分配1名且甲班必须分配1名,先在3名新生中任选一人,安排到甲班,
有C31=3种情况,
②、在剩下的3个班级中任选2个,安排剩下的2名新生,有A32=6种情况,
则有3×6=18种不同的分配方法;
故选:C.

点评 本题考查分步计数原理的应用,由于甲班必须分配1名,要优先分析甲.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+2alnx.
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为l,求实数a的值;
(2)在(1)的条件下,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某企业生产A,B两种产品,生产1吨A种产品需要煤4吨、电18千瓦;生产1吨B种产品需要煤1吨、电15千瓦.现因条件限制,该企业仅有煤10吨,并且供电局只能供电66千瓦,若生产1吨A种产品的利润为10000元;生产1吨B种产品的利润是5000元,试问该企业如何安排生产,才能获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在等差数列{an}中,a1=2,a3+a5=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)如果a2,am,a2m成等比数列,求正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=-$\frac{2+a{x}^{2}}{{e}^{x}}$(a>0)在区间[0,1]上有极值,且函数f(x)在区间[0,1]上的最小值不小于-$\frac{7}{e}$,则a的取值范围是(  )
A.(2,5]B.(2,+∞)C.(1,4}D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆的离心率e=$\frac{1}{2}$,一条准线方程为x=4.
(1)求椭圆的标准方程;
(2)若F1,F2为其左右两个焦点,过F1的直线交椭圆于A、B两点.
①若|AB|=2,求|AF2|+|BF2|的值;
②若∠F1AF2=30°,求△F1AF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点$A(\sqrt{3},0)$和点B(0,2),斜率为k(k≠0)的直线经过点P(2,0)且交E于M,N两点.
(1)求椭圆E的方程;
(2)当△AOM与△AON面积比值为7,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-(a+1)x+b.
(1)若f(x)<0的解集为(-1,3),求a,b的值;
(2)当a=1时,若对任意x∈R,f(x)≥0恒成立,求实数b的取值范围;
(3)当b=a时,解关于x的不等式f(x)<0(结果用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若男运动员抽取了8人,则女运动员抽取的人数为(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案