分析 根据切线的性质可得OP=$\frac{2\sqrt{3}}{3}$,从而得出P点的轨迹方程.
解答
解:连接OP,AB,OA,OB,
∵PA,PB是单位圆O的切线,
∴PA=PB,OA⊥PA,OB⊥PB,
∴∠OPA=∠OPB=$\frac{1}{2}$∠APB=60°,
又OA=OB=1,∴OP=$\frac{2\sqrt{3}}{3}$,
∴P点轨迹为以O为圆心,以$\frac{2\sqrt{3}}{3}$为半径的圆,
∴P点轨迹方程为x2+y2=$\frac{4}{3}$.
故答案为:x2+y2=$\frac{4}{3}$.
点评 本题考查了轨迹方程的求法,直线与圆的位置关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com