精英家教网 > 高中数学 > 题目详情
8.已知f(α)=$\frac{sin(\frac{π}{2}+α)•sin(2π-α)}{cos(-π-α)•sin(\frac{3}{2}π+α)}$.
(1)若α是第三象限角,且cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,求f(α)的值;
(2)若f(α)=-2,求2sinαcosα+cos2α的值.

分析 (1)利用诱导公式化简f(α),根据cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$化简,可得求f(α)的值;
(2)f(α)=-2,由2sinαcosα+cos2α=$\frac{2sinαcosα+co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$,“弦化切”的思想即可求解.

解答 解:由f(α)=$\frac{sin(\frac{π}{2}+α)•sin(2π-α)}{cos(-π-α)•sin(\frac{3}{2}π+α)}$=$\frac{cosα•-sinα}{-cosα•-cosα}=-tanα$
∵cos(α-$\frac{3}{2}$π)=-sinα=$\frac{1}{5}$,即sinα=$-\frac{1}{5}$
α是第三象限角,∴cosα=$-\sqrt{1-si{n}^{2}α}$=$-\frac{2\sqrt{6}}{5}$
那么f(α)=$-\frac{sinα}{cosα}=-\frac{\sqrt{6}}{12}$
(2)由f(α)=-tanα=-2,即tanα=2
那么:2sinαcosα+cos2α=$\frac{2sinαcosα+co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα+1}{ta{n}^{2}α+1}$=1.

点评 本题主要考察了同角三角函数关系式和诱导公式的应用,“弦化切”的思想.属于基本知识的考查

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和一个顶点在圆x2+y2=4上.
(1)求椭圆的方程;
(2)已知点P(-3,2),若斜率为1的直线l与椭圆G相交于A、B两点,等腰三角形ABP以AB为底边,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列-1,5,-9,13,…的一个通项公式是an=(-1)n(4n-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为调查某地区老年人是否需要志愿者提供帮助,用简单的随机抽样方法从该地区调查了500名老年人,结果如下:
性别
是否需要志愿者
需要4030
不需要160270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能够有99%的把握认为该地区老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=\frac{1}{3}{x^3}-4x+4$在[0,3]上的最值是(  )
A.最大值是4,最小值是$-\frac{4}{3}$B.最大值是2,最小值是$-\frac{4}{3}$
C.最大值是4,最小值是$-\frac{1}{3}$D.最大值是2,最小值是$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知△ABC的面积S=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4}$,则角C的大小是(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在圆x2+y2-4x+4y-2=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为10$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}满足:a1=2,且a1,a3,a13成等比数列.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)记Sn为数列{an}的前项n和,是否存在正整数n,使得Sn>40n+600?若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案