精英家教网 > 高中数学 > 题目详情
8.已知关于x的不等式x2+px+q<0的解集是-$\frac{1}{2}$<x<$\frac{1}{3}$,求不等式qx2+px+1<0的解集.

分析 根据题意知-$\frac{1}{2}$和$\frac{1}{3}$可看作方程x2+px+q的两个根,从而能求出p,q的值,代入qx2+px+1<0,即可求出不等式的解集.

解答 解:由已知得x1=-$\frac{1}{2}$,x2=$\frac{1}{3}$是方程x2+px+q=0的根,
∴-p=-$\frac{1}{2}$+$\frac{1}{3}$=-$\frac{1}{6}$,q=-$\frac{1}{2}×\frac{1}{3}$=-$\frac{1}{6}$,
∴p=$\frac{1}{6}$,q=-$\frac{1}{6}$,
∴不等式qx2+px+1<0,
即-$\frac{1}{6}$x2+$\frac{1}{6}$x+1<0,
∴x2-x-6>0,
∴x<-2或x>3.
∴不等式qx2+px+1<0的解集为(-∞,-2)∪(3,+∞).

点评 本题考查一元二次不等式的解法,关键是知道不等式的解集和方程的解之间的联系,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.直线ρ=$\frac{1}{acosθ+3sinθ}$与圆ρ=2cosθ相切.求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=2x+1与圆x2+y2=2的位置关系一定是(  )
A.相离B.相切
C.相交但直线不过圆心D.相交且直线过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y=axb(a,b为大于0的常数).现随机抽取6件合格产品,测得数据如下:
尺寸(mm)384858687888
质量(g)16.818.820.722.424.025.5
对数据作了初步处理,相关统计量的值如下表:
$\sum_{i=1}^6{({ln{x_i}•ln{y_i}})}$$\sum_{i=1}^6{({ln{x_i}})}$$\sum_{i=1}^6{({ln{y_i}})}$${\sum_{i=1}^6{{{({ln{x_i}})}^2}}^{\;}}$
75.324.618.3101.4
(Ⅰ)根据所给数据,求y关于x的回归方程;
(Ⅱ)按照某项指标测定,当产品质量与尺寸的比在区间(${\frac{e}{9}$,$\frac{e}{7}}$)内时为优等品.现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.
附:对于一组数据(v1,u1),(v2,u2),…,(vn,un),其回归直线u=α+βv的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}{v}_{i}{μ}_{i}-n\overline{v}•\overline{u}}{\sum_{i=1}^{n}{v}_{i}^{2}-n{\overline{v}}^{2}}$,$\widehat{α}$=$\overline{u}$-$\widehat{β}$$\overline{v}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某单位的春节联欢活动,组织了一次幸运抽奖活动,袋中装有5个除颜色外,大小、质地均相同的小球,其中2个红球,3个白球,抽奖者从中一次摸出2个小球,摸取后放回,摸到2个红球得一等奖,1个红球得二等奖,甲、乙两人各抽奖一次,则甲得一等奖且乙得二等奖的概率为$\frac{3}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式6-x-2x2<0的解集是(  )
A.{x|-$\frac{3}{2}$<x<2}B.{x|-2<x<$\frac{3}{2}$}C.{x|x<-$\frac{3}{2}$或x>2}D.{x|x<-2或x>$\frac{3}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的通项公式an=2n+2(n∈N*
(1)求a2,a5
(2)若a2,a5恰好是等比数列{bn}的第2项和第3项,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设A,B为n阶方阵,满足A+B=AB.若B=$(\begin{array}{l}{1}&{-3}&{0}\\{2}&{1}&{0}\\{0}&{0}&{2}\end{array})$,求矩阵A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=lg(x+k),若其反函数f-1(x)的图象经过点(1,4),则实数k=(  )
A.1B.4C.6D.9999

查看答案和解析>>

同步练习册答案