精英家教网 > 高中数学 > 题目详情
19.${∫}_{-a}^{a}$(xcosx+5sinx)=0.

分析 若被积函数为奇函数,且积分上下限关于原点对称,则其积分值为0.

解答 解:f(x)=xcosx+5sinx为奇函数,故${∫}_{-a}^{a}$(xcosx+5sinx)=0.
故答案为:0

点评 本题考查了定积分的计算,关键掌握被积函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且${S_n}=2{n^2}+n$,n∈N*,在数列{bn}中,b1=1,bn+1=2bn+3,n∈N*
(1)求证:{bn+3}是等比数列;
(2)若cn=log2(bn+3),求数列$\{\frac{1}{{{c_n}{c_{n+1}}}}\}$的前n项和Rn
(3)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.关于x的方程x3-ax+2=0有三个不同实数解,则实数a的取值范围是(  )
A.(2,+∞)B.(3,+∞)C.(0,3 )D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数z满足z-2i=-i•z,则z=(  )
A.-1+iB.1-iC.1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据如表:根据表中数据得到${K^2}=\frac{{775×{{(20×450-5×300)}^2}}}{25×750×320×455}$≈15.968,因为K2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为(  )
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
A.0.1B.0.05C.0.01D.0.001

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某公司为了了解一年内的用水情况,抽取了10天的用水量如表所示:
天数1112212
用水量/吨22384041445095
(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?
(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.4sin15°cos75°-2等于(  )
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z满足$\frac{1+2i}{z}$=i,则|z|=(  )
A.3B.5C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若0≤x≤2,$y=\frac{1}{2}×{4^x}-3×{2^x}+5$,求y的最大值与最小值以及相对应的x的值.

查看答案和解析>>

同步练习册答案