精英家教网 > 高中数学 > 题目详情
18.已知定义域为R的奇函数f(x)的图象是一条连续不断的曲线,当x∈(1,+∞)时,f′(x)<0;当x∈(0,1)时f′(x)>0,且f(2)=0,则关于x的不等式(x+1)f(x)>0的解集为(-2,-1)∪(0,2).

分析 利用导数研究函数的单调性,可得极值与最值,又函数f(x)为R上的奇函数,且f(2)=0,可得图象:对x与-1的大小关系分类讨论即可得出.

解答 解:当x∈(1,+∞)时,f′(x)<0;当x∈(0,1)时,f′(x)>0,可知:当x=1时,函数f(x)取得极大值即为最大值,又函数f(x)为R上的奇函数,且f(2)=0,可得图象:
关于x的不等式(x+1)f(x)>0(x≠-1)等价于:
$\left\{\begin{array}{l}{x>-1}\\{f(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<-1}\\{f(x)<0}\end{array}\right.$,
解得:0<x<2,或-2<x<-1.
∴不等式(x+1)f(x)>0的解集为(-2,-1)∪(0,2).
故答案为:(-2,-1)∪(0,2).

点评 本题考查了利用导数研究函数的单调性极值最值与图象、函数的奇偶性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在某项娱乐活动的海选过程中,评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在(40,60)内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.
(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,估计这200名参赛选手的成绩平均数和中位数;
(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率如表:
参赛选手成绩所在区间 (40,50](50,60)
 每名选手能够进入第二轮的概率$\frac{1}{2}$$\frac{2}{3}$
假设每名选手能否通过复活赛相互独立,现有3名选手的成绩分别为(单位:分)45,52,58,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=({\sqrt{3}sinωx-cosωx})•cosωx+\frac{1}{2}$(其中ω>0)的最小正周期为π.
(1)求函数y=f(x)的单调递增区间;
(2)已知△ABC的内角A、B、C的对边分别是a、b、c,满足(2b-a)cosC=c•cosA,且f(B)恰是f(x)的最大值,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$y=\frac{x}{2}+sinx$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.等差数列{an}中,前n项和为Sn,a1>0,S12•S13<0则n为何值时,Sn最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c.若B=45°,C=60°,$AB=3\sqrt{2}$,则AC的值等于(  )
A.2$\sqrt{3}$B.4$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题“若a>1,则a2>1”的逆否命题是若a2≤1,则a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)用辗转相除法求779与247的最大公约数.
(2)利用秦九韶算法求多项式f(x)=2x5+4x4-2x3+8x2+7x+4当x=3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,把1,3,6,10,15,21,…这些数叫作三角形数,这是因为这些数目的点可以排成一个正三角形,试求第九个三角形数是(  )
A.44B.45C.46D.47

查看答案和解析>>

同步练习册答案