精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-lnx-ax,a∈R.
(Ⅰ)若存在x∈(0,+∞),使得f(x)<0,求a的取值范围;
(Ⅱ)若f(x)=x有两个不同的实数解u,v(0<u<v),证明:f′(
u+v
2
)>1.
考点:利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)当x∈(0,+∞)时,f(x)<0等价于x-
lnx
x
<a.由此利用导数的性质能求出a的取值范围.
(Ⅱ)由已知条件推导出a=u+v-
lnu-lnv
u-v
-1.f′(
u+v
2
)=
lnu-lnv
u-v
-
2
u+v
+1,设h(u)=lnu-lnv-
2(u-v)
u+v
,由此利用函数的单调性能证明f′(
u+v
2
)>1.
解答: (Ⅰ)解:当x∈(0,+∞)时,f(x)<0等价于x-
lnx
x
<a.
令g(x)=x-
lnx
x
,则g′(x)=
x2-1+lnx
x2

当x∈(0,1)时,g′(x)<0;
当x∈(1,+∞)时,g′(x)>0.
g(x)有最小值g(1)=1.…(4分)
∴a的取值范围是(1,+∞).…(5分)
(Ⅱ)证明:∵f(x)=x,即x2-lnx=(a+1)x有两个不同的实数解u,v.
∴u2-lnu=(a+1)u,v2-lnv=(a+1)v.
∴(u+v)(u-v)-(lnu-lnv)=(a+1)(u-v).…(7分)
由u-v<0,解得a=u+v-
lnu-lnv
u-v
-1.
又f′(x)=2x-
1
x
-a,
∴f′(
u+v
2
)=(u+v)-
2
u+v
-(u+v)+
lnu-lnv
u-v
+1
=
lnu-lnv
u-v
-
2
u+v
+1.…(9分)
设h(u)=lnu-lnv-
2(u-v)
u+v

则当u∈(0,v)时,h′(u)=
(u-v)2
u(u+v)2
>0,
h(u)在(0,v)单调递增,h(u)<h(v)=0,
从而
lnu-lnv
u-v
-
2
u+v
>0,
∴f′(
u+v
2
)>1.(12分)
点评:本题考查实数的取值范围的求法,考查不等式的证明,解题时要认真审题,注意导数性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某少数民族的刺绣有着悠久的历史,如图所示(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.则f(5)等于(  )
A、39B、40C、41D、42

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+π)=
4
5
,且sinαcosα<0,
(1)求cosα的值;
(2)求
2sin(α-π)+3tan(3π-α)
4cos(α-3π)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点A(a,b)(其中a≠b)在矩阵M=
cos α-sin α
sin αcos α
 对应变换的作用下得到的点为B(-b,a),
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=
0
1
2
10
所对应变换的作用下得到的新的曲线C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
2
x2-(1+a)x.
(Ⅰ)当a=-1时,求f(x)在点(e,f(e))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)证明:对于任意不小于2的正整数n,不等式
1
ln2
+
1
ln3
…+
1
lnn
>1-
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列不等式的解集:
(1)(x2+x-2)(x+3)<0;
(2)
4x-7
3-x
≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有10件产品,其中有2件次品,任意抽出3件检查.
(1)正品A被抽到有多少种不同的抽法?
(2)至少一件是次品的抽法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:
1
n+1
+
1
n+2
+…+
1
3n+1
25
24
.(n=1,2,3…)

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx+b与曲线x2+4y2-4=0交于A、B两点,记△AOB的面积为S(O是坐标原点).
(1)求曲线的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(3)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

同步练习册答案