精英家教网 > 高中数学 > 题目详情
已知sin(α+π)=
4
5
,且sinαcosα<0,
(1)求cosα的值;
(2)求
2sin(α-π)+3tan(3π-α)
4cos(α-3π)
的值.
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:(1)已知等式利用诱导公式化简求出sinα的值,进而确定出cosα的正负,利用同角三角函数间基本关系即可求出cosα的值;
(2)由sinα与cosα的值,利用同角三角函数间基本关系求出tanα的值,原式利用诱导公式化简后,将各自的值代入计算即可求出值.
解答: 解:(1)∵sin(α+π)=-sinα=
4
5
,即sinα=-
4
5
,且sinαcosα<0,
∴cosα>0,
则cosα=
1-sin2α
=
3
5

(2)∵sinα=-
4
5
,cosα=
3
5

∴tanα=-
4
3

则原式=
-2sinα-3tanα
-4cosα
=
-2×(-
4
5
)-3×(-
4
3
)
-4×
3
5
=-
7
3
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
ax-2,x≤2
loga(x+2),x>2
是R上的增函数,则a的取值范围是(  )
A、(0,1)
B、(1,4]
C、(1,+∞)
D、[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在钝角三角形ABC中,若B=45°,a=
2
,则边长c的取值范围是(  )
A、(1,
2
B、(0,1)∪(
2
,+∞)
C、(1,2)
D、(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

计算由曲线y=
1
3
x2,y=x所围成的平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=
1
2
x2将圆面x2+y2≤8分成两部分,现在向圆面上均匀投点,这些点落在图中阴影部分的概率为
1
4
+
1
,求
2
0
8-x2
-
1
2
x2)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD(图1)的三视图如图2所示,E是侧棱PC上的动点.

(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)是否不论点E在何位置,都有BD⊥AE?证明你的结论;
(Ⅲ)点E在什么位置时,二面角D-AE-B的大小为120°?

查看答案和解析>>

科目:高中数学 来源: 题型:

-
π
2
<x<0,sinx+cosx=
1
5

(1)求sinxcosx的值;
(2)求sinx-cosx的值;
(3)求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-lnx-ax,a∈R.
(Ⅰ)若存在x∈(0,+∞),使得f(x)<0,求a的取值范围;
(Ⅱ)若f(x)=x有两个不同的实数解u,v(0<u<v),证明:f′(
u+v
2
)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点是F(1,0),且离心率为
1
2

(1)求椭圆C的方程;
(2)设经过点F且斜率为1的直线交椭圆C与M、N两点,求MN的长.

查看答案和解析>>

同步练习册答案