精英家教网 > 高中数学 > 题目详情
抛物线y=
1
2
x2将圆面x2+y2≤8分成两部分,现在向圆面上均匀投点,这些点落在图中阴影部分的概率为
1
4
+
1
,求
2
0
8-x2
-
1
2
x2)dx.
考点:定积分
专题:导数的概念及应用
分析:先求出抛物线y=
1
2
x2将圆面x2+y2≤8分的交点,确定上下限,再由几何概型求得其面积,问题得以解决.
解答: 解:方程组
x2+y2=8
y=
1
2
x2
得x=±2,
∴阴影部分的面积为
2
-2
8-x2
-
1
2
x2)dx.
∵圆的面积为8π,
∴由几何概型可得阴影部分的面积是8π×(
1
4
+
1
)=2π+
4
3

由定积分的几何意义得,
2
0
8-x2
-
1
2
x2)dx
=
1
2
2
-2
8-x2
-
1
2
x2)dx.
=π+
2
3
点评:本题主要考查了定积分的几何意义和几何概型,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知盒中装有3只螺口与2只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为(  )
A、
2
5
B、
3
5
C、
1
2
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体的一个顶点上三条棱长分别是1、2、3,且它的8个顶点都在同一球面上,则这个球的表面积是(  )
A、7πB、14π
C、28πD、56π

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若a=b或a=b-1,就称甲乙“心有灵犀”现在任意找两人玩这个游戏,则他们“心有灵犀”的概率为(  )
A、
7
36
B、
1
4
C、
11
36
D、
5
12

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知鞭形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠BAD=∠CDA=90°,∠EFA=60°,点H,G分别是线段EF,BC的中点,点M为HE的中点.
(Ⅰ)求证:MG∥平面ADF.
(Ⅱ)求证:平面AHC⊥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+π)=
4
5
,且sinαcosα<0,
(1)求cosα的值;
(2)求
2sin(α-π)+3tan(3π-α)
4cos(α-3π)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点P(6m,-8m)(m≠0)
(1)求tanα的值;
(2)求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
2
x2-(1+a)x.
(Ⅰ)当a=-1时,求f(x)在点(e,f(e))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)证明:对于任意不小于2的正整数n,不等式
1
ln2
+
1
ln3
…+
1
lnn
>1-
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD的四个顶点的坐标分别为A(3,1),B(-1,1),C(-3,-1),D(1,-1).其在矩阵M=
k1
02
(k<0)所对应的变换作用下变成菱形A′B′C′D′.
(Ⅰ)求k的值;
(Ⅱ)求矩阵M的逆矩阵M-1

查看答案和解析>>

同步练习册答案