精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点是F(1,0),且离心率为
1
2

(1)求椭圆C的方程;
(2)设经过点F且斜率为1的直线交椭圆C与M、N两点,求MN的长.
考点:直线与圆锥曲线的关系,椭圆的标准方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)利用椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点是F(1,0),且离心率为
1
2
,求出c,a,可得b,即可求椭圆C的方程;
(2)设l:y=x-1,代入
x2
4
+
y2
3
=1
,求出方程的解,即可求MN的长.
解答: 解:(1)∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点是F(1,0),且离心率为
1
2

∴c=1,a=2,
∴b=
3

∴椭圆C的方程为
x2
4
+
y2
3
=1

(2)设l:y=x-1,代入
x2
4
+
y2
3
=1
,可得7x2-8x-16=0,
∴x=4±4
2

∴|MN|=
2
•8
2
=16.
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(α+π)=
4
5
,且sinαcosα<0,
(1)求cosα的值;
(2)求
2sin(α-π)+3tan(3π-α)
4cos(α-3π)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有10件产品,其中有2件次品,任意抽出3件检查.
(1)正品A被抽到有多少种不同的抽法?
(2)至少一件是次品的抽法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:
1
n+1
+
1
n+2
+…+
1
3n+1
25
24
.(n=1,2,3…)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD的四个顶点的坐标分别为A(3,1),B(-1,1),C(-3,-1),D(1,-1).其在矩阵M=
k1
02
(k<0)所对应的变换作用下变成菱形A′B′C′D′.
(Ⅰ)求k的值;
(Ⅱ)求矩阵M的逆矩阵M-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|log2(4x)•log4
4
x2
≥2},g(x)=
4x
4x+1

(Ⅰ)求出集合A;
(Ⅱ)判断g(x)的单调性,并用单调性的定义证明;
(Ⅲ)当λ为何值时,方程g(x)=λ在x∈A上有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(a2-4)+(a+2)i(a∈R)
(Ⅰ)若z为纯虚数,求实数a的值;
(Ⅱ)若z在复平面上对应的点在直线x+2y+1=0上,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx+b与曲线x2+4y2-4=0交于A、B两点,记△AOB的面积为S(O是坐标原点).
(1)求曲线的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(3)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,A(2,4),B(-1,-2),C(4,3),BC边上的高为AD
(1)分别计算:
AB
AC
AB
AC

(2)求点D的坐标.

查看答案和解析>>

同步练习册答案