精英家教网 > 高中数学 > 题目详情
8.设i为虚数单位,复数z=i(i-1)则复数z的共轭复数$\bar z$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、共轭复数的定义、几何意义即可得出.

解答 解:复数z=i(i-1)=-1-i则复数z的共轭复数$\overline{z}$=-1+i对应的点(-1,1)位于第二象限.
故选:B.

点评 本题考查了复数的运算法则、共轭复数的定义、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的体积为(  )
A.$\frac{\sqrt{3}}{6}$πB.$\frac{3}{2}$πC.$\frac{1}{6}$πD.$\frac{\sqrt{3}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法:①分类变量A与B的随机变量K2越大,说明“A与B有关系”的可信度越大,②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3,③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=2,$\overline x=1$,$\overline y=3$,则a=1,④若变量x和y满足关系y=-0.1x+1,且变量y与z正相关,则x与z也正相关,正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题正确的是⑤
①若函数y=f(x)满足f(x-1)=f(x+1),则函数f(x)的图象关于直线x=1对称;
②在线性回归分析中,相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,且r越接近于1,该组数据的线性相关程度越大;
③在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0是△ABC为钝角三角形的充要条件;
④命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0<0”;
⑤由样本数据得到的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$必过样本点的中心($\overline{x}$,$\overline{y}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知3sin2α+2sin2β=1,3sin2α-2sin2β=0,且α、β都是锐角,则α+2β的值为(  )
A.$\frac{π}{2}$B.πC.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=-x3+3x在(3-a2,2a)上有最大值,则实数α的取值范围是(  )
A.$(\frac{1}{2},\sqrt{2})$B.$(\sqrt{2},\sqrt{5}]$C.$(1,\sqrt{2})$D.$(\sqrt{2},\sqrt{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”;有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n=(  )
A.15B.11C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}|{lnx}|\\ 2-lnx\end{array}\right.$$\begin{array}{l}0<x≤e\\ x>e\end{array}$,若正实数a,b,c互不相等,且f(a)=f(b)=f(c),则a•b•c的取值范围为(  )
A.(e,e2B.(1,e2C.$(\frac{1}{e},e)$D.$(\frac{1}{e},{e^2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.
求证:BC⊥AB.

查看答案和解析>>

同步练习册答案