分析 在平面PAB内,作AD⊥PB于D,则AD⊥平面PBC,从而AD⊥BC,再由PA⊥平面ABC,得PA⊥BC,从而BC⊥平面PAB,由此能证明BC⊥AB.
解答 证明:在平面PAB内,作AD⊥PB于D.
∵平面PAB⊥平面PBC,![]()
且平面PAB∩平面PBC=PB.
∴AD⊥平面PBC,又BC?平面PBC,
∴AD⊥BC.
又∵PA⊥平面ABC,BC?平面ABC,
∴PA⊥BC,∴BC⊥平面PAB.
又AB?平面PAB,∴BC⊥AB.
点评 本题考查线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:解答题
| 非体育迷 | 体育迷 | 合计 | |
| 男 | |||
| 女 | |||
| 合计 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{9}{4}$,0] | B. | [-2,$\frac{1}{4}$] | C. | [-2,0] | D. | [-$\frac{9}{4}$,-2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com