精英家教网 > 高中数学 > 题目详情
若y=|x-3|+|x+a|的最小值是5,求a.
考点:函数的最值及其几何意义
专题:不等式的解法及应用
分析:根据绝对值不等式的性质即可得到结论.
解答: 解:y=|x-3|+|x+a|=|3-x|+|x+a|≥|3-x+x+a|=|3+a|,
故最小值为|3+a|=5,
解得a=2或a=-8.
点评:本题主要考查不等式的应用,要求熟练掌握绝对值不等式的求解方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-3x+
1
x
,其中a为常数,a∈R.
(1)若f(x)是一个单调递减函数,求a的取值范围;
(2)当a=4时,求方程f(x)=0在(e-10,+∞)上根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:mx2+(m-2)x-2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

某次有1000人参加数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及以上为优秀.
(1)下表是这次考试成绩的频数分布表,求正整数a,b的值;
区间[75,80)[80,85)[85,90)[90,95)[95,100]
人数50a350300b
(2)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某体育杂志针对2014年巴西世界杯发起了一项调查活动,调查“各球队在世界杯的名次与该队历史上的实力和表现有没有关系”,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
 有关系无关系不知道
40岁以下800450200
40岁以上(含40岁)100150300
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持“有关系”态度的人中抽取45人,求n的值,并求从持其他两种态度的人中应抽取的人数;
(2)在持“不知道”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任选取2人,求至少一人在40岁以下的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式
ax-1
x+1
>0(a∈R),解这个关于x的不等式;

查看答案和解析>>

科目:高中数学 来源: 题型:

球面上的3个点,其中任意两点的球面距离都等于大圆周长的
1
6
,经过这3个点的小圆的周长为4π,求这个球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)是偶函数,且x≥0时,f(x)=2(x-1)
(Ⅰ)当x<0时,求f(x)解析式;
(Ⅱ)当x∈[-1,m](m>-1)时,求f(x)取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=
a
x
,x≥1
-x+3a,x<1
是R上的单调函数,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案