精英家教网 > 高中数学 > 题目详情
14.用一个半径为10cm的半圆纸片卷成一个最大的无底圆锥,放在水平桌面上,被一阵风吹倒,如图所示,求它的最高点到桌面的距离.

分析 如图所示,设PAB为轴截面,过点A作AD⊥PB,利用圆的周长公式π•AB=10π,解得AB=10,可得△PAB是等边三角形,即可得出.

解答 解:如图所示,
设PAB为轴截面,过点A作AD⊥PB,
π•AB=10π,解得AB=10,∴△PAB是等边三角形,
∴AD=AB•sin60°=10×$\frac{\sqrt{3}}{2}$=5$\sqrt{3}$.
∴它的最高点到桌面的距离为5$\sqrt{3}$cm.

点评 本题考查了圆锥的轴截面的性质、圆的弧长与周长计算公式、等边三角形的性质,考查了空间想象能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合U=R,A={x|2≤x≤8},B={x|1<x<6},C={x|x>a}.
(1)求A∪B,(∁UA)∩B;
(2)若A∩C≠∅,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(k,4),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则下列结论正确的是(  )
A.k=-6B.k=2C.k=6D.k=-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.集合A={x|$\frac{x+2}{x-2}$≤0,x∈R},B={x||x-1|<2,x∈R}.
(1)求A、B;
(2)求B∩(∁UA).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从总体中抽取一个样本:3、7、4、6、5,则总体标准差的点估计值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的侧面积为(  )
A.$\frac{3}{2}π$B.$\frac{3}{2}π+\sqrt{3}$C.$π+\sqrt{3}$D.$\frac{5}{2}π+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x∈R|ax2-3x+1=0,a∈R}.
(1)若{1}⊆A,求a的值;
(2)若集合A恰有两个子集,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.关于下列几何体,说法正确的是(  )
A.图①是圆柱B.图②和图③是圆锥C.图④和图⑤是圆台D.图⑤是圆台

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}的通项公式${a_n}=cos\frac{nπ}{2}$,其前n项和为Sn,则S2015等于(  )
A.1008B.2015C.0D.-1

查看答案和解析>>

同步练习册答案