精英家教网 > 高中数学 > 题目详情
10.已知集合A={x∈R|ax2-3x+1=0,a∈R}.
(1)若{1}⊆A,求a的值;
(2)若集合A恰有两个子集,求a的值.

分析 (1)把x=1代入ax2-3x+1=0,通过解该方程求得a的值;
(2)根据集合A的子集只有两个,则说明集合A只有一个元素,进而通过讨论a的取值,求解即可.

解答 解 (1)∵{1}⊆A,
∴1∈A,
∴a×12-3×1+1=0,
∴a=2.
(2)因为A恰有两个子集,所以A为单元素集合.
当a=0时,x=$\frac{1}{3}$;
当a≠0时,△=(-3)2-4a=0,∴a=$\frac{9}{4}$.
∴a=0或a=$\frac{9}{4}$时A为单元素集合,A恰有两个子集.

点评 本题主要考查利用集合子集个数判断集合元素个数的应用,含有n个元素的集合,其子集个数为2n个,注意对a进行讨论,防止漏解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为An,对任意n∈N*满足$\frac{{{A_{n+1}}}}{n+1}$-$\frac{A_n}{n}$=$\frac{1}{2}$,且a1=1,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),b3=5,其前9项和为63.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=$\frac{b_n}{a_n}$+$\frac{a_n}{b_n}$,数列{cn}的前n项和为Tn,若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行“交叉排列”,得到一个新的数列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,b6,…,求这个新数列的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果x<0,0<y<1,那么$\frac{{y}^{2}}{x}$,$\frac{y}{x}$,$\frac{1}{x}$从小到大的顺序是$\frac{1}{x}$<$\frac{y}{x}$<$\frac{{y}^{2}}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用一个半径为10cm的半圆纸片卷成一个最大的无底圆锥,放在水平桌面上,被一阵风吹倒,如图所示,求它的最高点到桌面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在一次数学测验后,班级学委对选答题的选题情况进行了统计,如下表:(单位:人)
几何证明选讲坐标系与参数方程不等式选讲合计
男同学124622
女同学081220
合计12121842
在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知两名数学科代表都在选做《不等式选讲》的同学中.
(Ⅰ)求在选做“坐标系与参数方程”的同学中,至少有一名女生参加座谈的概率;
(Ⅱ)记抽到数学科代表的人数为X,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在一次某地区中学联合考试后,汇总了3217名文科考生的数学成绩,用a1,a2,…,a3217表示,我们将不低于120的考分叫“优分”,将这些数据按图的程序框图进行信息处理,则输出的数据为这3217名考生的(  )
A.平均分B.“优分”人数
C.“优分”率D.“优分”人数与非“优分”人数的比值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若O为坐标原点,A(2,0),点P(x,y)坐标满足$\left\{\begin{array}{l}x-4y+3≤0\\ 3x+5y≤25\\ x≥1\end{array}$,则|$\overrightarrow{OP}$|cos∠AOP的最大值为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.平面内动点P(x,y)与两定点A(-2,0),B(2,0)连线的斜率之积等于$-\frac{1}{4}$,若点P的轨迹为曲线E,过点$Q(-\frac{6}{5},0)$直线l交曲线E于M,N两点.
(1)求曲线E的方程,并证明:∠MAN为90°;
(2)若四边形AMBN的面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等差数列{an}中,a2+a5+a11=21,则a2-a4+a6-a8+a10=(  )
A.0B.7C.14D.21

查看答案和解析>>

同步练习册答案