精英家教网 > 高中数学 > 题目详情
16.已知数列{an}的前n项和为An,对任意n∈N*满足$\frac{{{A_{n+1}}}}{n+1}$-$\frac{A_n}{n}$=$\frac{1}{2}$,且a1=1,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),b3=5,其前9项和为63.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=$\frac{b_n}{a_n}$+$\frac{a_n}{b_n}$,数列{cn}的前n项和为Tn,若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行“交叉排列”,得到一个新的数列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,b6,…,求这个新数列的前n项和Sn

分析 (1)由$\frac{{{A_{n+1}}}}{n+1}-\frac{A_n}{n}=\frac{1}{2}$,利用等差数列通项公式可得An,再利用递推关系可得an.由bn+2-2bn+1+bn=0,可得数列
{bn}是等差数列,利用等差数列的求和公式与通项公式即可得出.
(2)由(1)知${c_n}=\frac{b_n}{a_n}+\frac{a_n}{b_n}=\frac{n+2}{n}+\frac{n}{n+2}=2+2(\frac{1}{n}-\frac{1}{n+2})$,再利用“裂项求和”方法、数列的单调性即可得出.
(3)数列{an}的前n项和${A_n}=\frac{n(n+1)}{2}$,数列{bn}的前n项和${B_n}=\frac{n(n+5)}{2}$.对n分类讨论即可得出.

解答 解:(1)∵$\frac{{{A_{n+1}}}}{n+1}-\frac{A_n}{n}=\frac{1}{2}$,∴数列$\left\{{\frac{A_n}{n}}\right\}$是首项为1,公差为$\frac{1}{2}$的等差数列,
∴$\frac{A_n}{n}={A_1}+(n-1)×\frac{1}{2}=\frac{1}{2}n+\frac{1}{2}$,即${A_n}=\frac{n(n+1)}{2}(n∈{N^*})$,
∴${a_{n+1}}={A_{n+1}}-{A_n}=\frac{(n+1)(n+2)}{2}-\frac{n(n+1)}{2}=n+1(n∈{N^*})$,
又a1=1,∴${a_n}=n(n∈{N^*})$,
∵bn+2-2bn+1+bn=0,∴数列{bn}是等差数列,
设{bn}的前n项和为Bn,∵${B_9}=\frac{{9({b_3}+{b_7})}}{2}=63$且b3=5,
∴b7=9,∴{bn}的公差为$\frac{{{b_7}-{b_3}}}{7-3}=\frac{9-5}{7-3}=1$,${b_n}=n+2(n∈{N^*})$.
(2)由(1)知${c_n}=\frac{b_n}{a_n}+\frac{a_n}{b_n}=\frac{n+2}{n}+\frac{n}{n+2}=2+2(\frac{1}{n}-\frac{1}{n+2})$,
∴Tn=c1+c2+…+cn=$2n+2(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+…+\frac{1}{n}-\frac{1}{n+2})$=$2n+2(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$=$2n+3-2(\frac{1}{n+1}+\frac{1}{n+2})$,
∴${T_n}-2n=3-2(\frac{1}{n+1}+\frac{1}{n+2})$,
设${R_n}=3-2(\frac{1}{n+1}+\frac{1}{n+2})$,则${R_{n+1}}-{R_n}=2(\frac{1}{n+1}-\frac{1}{n+3})=\frac{4}{(n+1)(n+3)}>0$,
∴数列{Rn}为递增数列,
∴${({R_n})_{min}}={R_1}=\frac{4}{3}$,
∵对任意正整数n,都有Tn-2n≥a恒成立,∴$a≤\frac{4}{3}$.
(3)数列{an}的前n项和${A_n}=\frac{n(n+1)}{2}$,数列{bn}的前n项和${B_n}=\frac{n(n+5)}{2}$.
①当n=2k(k∈N*)时,${S_n}={A_k}+{B_k}=\frac{k(k+1)}{2}+\frac{k(k+5)}{2}={k^2}+3k$;
②当n=4k+1(k∈N*)时,${S_n}={A_{2k+1}}+{B_{2k}}=\frac{(2k+1)(2k+2)}{2}+\frac{2k(2k+5)}{2}$=4k2+8k+1,
特别地,当n=1时,S1=1也符合上式;
③当n=4k-1(k∈N*)时,${S_n}={A_{2k-1}}+{B_{2k}}=\frac{(2k-1)2k}{2}+\frac{2k(2k+5)}{2}=4{k^2}+4k$.
综上:${S_n}=\left\{{\begin{array}{l}{\frac{1}{4}{n^2}+\frac{3}{2}n,n=2k}\\{\frac{{{n^2}+6n-3}}{4},n=4k-3}\\{\frac{{{n^2}+6n+5}}{4},n=4k-1}\end{array}}\right.$,k∈N*…(16分)

点评 本题考查了数列的递推关系、等差数列通项公式与求和公式、数列的单调性、不等式的解法,考查了分类讨论方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在正方形ABCD中,E是线段CD的中点,若$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{BD}$,则λ-μ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知sinx=$\frac{3}{5}$,则sin2x的值为(  )
A.$\frac{12}{25}$B.$\frac{24}{25}$C.$\frac{12}{25}$或$-\frac{12}{25}$D.$\frac{24}{25}$或-$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合U=R,A={x|2≤x≤8},B={x|1<x<6},C={x|x>a}.
(1)求A∪B,(∁UA)∩B;
(2)若A∩C≠∅,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列{an}的各项均为正数,且满足:a1a9=4,则数列{log2an}的前9项之和为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合A={x|1<log2x<3,x∈Z},B={x|5≤x<9},则A∩B=(  )
A.[5,e2B.[5,7]C.{5,6,7}D.{5,6,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列Sn为等比数列{an}的前n项和,S8=2,S24=14,则S2016=(  )
A.2252-2B.2253-2C.21008-2D.22016-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(k,4),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则下列结论正确的是(  )
A.k=-6B.k=2C.k=6D.k=-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x∈R|ax2-3x+1=0,a∈R}.
(1)若{1}⊆A,求a的值;
(2)若集合A恰有两个子集,求a的值.

查看答案和解析>>

同步练习册答案