精英家教网 > 高中数学 > 题目详情
8.数列{an}的通项公式${a_n}=cos\frac{nπ}{2}$,其前n项和为Sn,则S2015等于(  )
A.1008B.2015C.0D.-1

分析 a1=cos$\frac{π}{2}$=0,a2=cosπ=-1,a3=cos$\frac{3π}{2}$=0,a4=cos2π=1,a1+a2+a3+a4=0,数列{an}是以4为周期的周期数列,且前4项的和为0,S2015=S3=a1+a2+a3=-1.

解答 解:a1=cos$\frac{π}{2}$=0,a2=cosπ=-1,a3=cos$\frac{3π}{2}$=0,a4=cos2π=1,
∴a1+a2+a3+a4=0
由余弦函数的性质可知:数列{an}是以4为周期的周期数列,且前4项的和为0,
2015=4×503+3,
∴S2015=S3=a1+a2+a3=-1,
故答案选:D.

点评 本题考查数列的通项及前n项和,考查数列的周期性,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.用一个半径为10cm的半圆纸片卷成一个最大的无底圆锥,放在水平桌面上,被一阵风吹倒,如图所示,求它的最高点到桌面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.平面内动点P(x,y)与两定点A(-2,0),B(2,0)连线的斜率之积等于$-\frac{1}{4}$,若点P的轨迹为曲线E,过点$Q(-\frac{6}{5},0)$直线l交曲线E于M,N两点.
(1)求曲线E的方程,并证明:∠MAN为90°;
(2)若四边形AMBN的面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等差数列{an}的前11项的和为33,则a5+a6+a7等于(  )
A.6B.9C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在边长为2的菱形ABCD中,∠BAD=120°,则$\overrightarrow{AB}$在$\overrightarrow{AC}$方向上的投影为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数$f(x)=sin(ωx+\frac{π}{4})-cos(ωx+\frac{π}{4})(0<ω<2)$在区间$[-\frac{π}{3},\frac{π}{4}]$上单调递增,则ω的最大值为(  )
A.$\frac{3}{2}$B.1C.$\frac{5}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等差数列{an}中,a2+a5+a11=21,则a2-a4+a6-a8+a10=(  )
A.0B.7C.14D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若输出的$S=\frac{2016}{4033}$,则判断框内应填入(  )
A.i>2014B.i>2014C.i>2015D.i>2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)对一切x,y∈R都有f(x+y)=f(x)+f(y),若f(-3)=a,用a表示f(12)=-4a.

查看答案和解析>>

同步练习册答案