精英家教网 > 高中数学 > 题目详情
17.执行如图所示的程序框图,若输出的$S=\frac{2016}{4033}$,则判断框内应填入(  )
A.i>2014B.i>2014C.i>2015D.i>2017

分析 解:模拟执行如图所示的程序框图,得出程序运行后是计算并输出
S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$的值,当输出$S=\frac{2016}{4033}$时求出n的值,即可得出结论.

解答 解:模拟执行如图所示的程序框图,如下;
i=1,S=0,S=$\frac{1}{1×3}$,
i=2,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$,
i=3,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$,…,
i=n,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$
=(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)×$\frac{1}{2}$
=(1-$\frac{1}{2n+1}$)×$\frac{1}{2}$
=$\frac{n}{2n+1}$,
输出的$S=\frac{2016}{4033}$=$\frac{n}{2n+1}$,解得n=2016;
所以判断框内应填入i>2015.
故选:C.

点评 本题考查了程序框图的应用问题,也考查了数列求和的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.关于下列几何体,说法正确的是(  )
A.图①是圆柱B.图②和图③是圆锥C.图④和图⑤是圆台D.图⑤是圆台

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}的通项公式${a_n}=cos\frac{nπ}{2}$,其前n项和为Sn,则S2015等于(  )
A.1008B.2015C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等比数列{an}的前n和为Sn,若$\frac{S_6}{S_3}=4$,则$\frac{S_9}{S_3}$=(  )
A.5B.9C.13D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于x的方程$\sqrt{4-{x^2}}-kx+2k-3=0$有两个不同实根时,实数k的取值范围是$\frac{5}{12}<k≤\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}+4,}&{x<-1}\\{a{x^2}+4x,}&{x≥-1}\end{array}}\right.$(a∈R).
(Ⅰ)若a=1,解不等式f(x)<12;
(Ⅱ)若总存在x0∈[-1,1],使得f(x0)=3-a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正方体OABC-O1A1B1C1(O为坐标原点)中A(10,-5,10),C(-11,-2,10),O1(-2,-14,-5),则顶点B1的坐标为(-3,-21,-15).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C1的极坐标方程为ρ=2(cosθ+sinθ),曲线C2的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=-sinα}\end{array}\right.$ (α为参数).
(1)求曲线C1,C2的直角坐标方程;
(2)直线l:$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)与曲线C1交于A,B两点,与y轴交于E,求|EA|+|EB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若关于x的不等式lnx>ax-1的解集为{x|x>2},则不等式lnx<1-$\frac{a}{x}$的解集为(  )
A.{x|x>2}B.{x|0<x<2}C.{x|x>$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$}

查看答案和解析>>

同步练习册答案