精英家教网 > 高中数学 > 题目详情
7.当0<x<$\frac{1}{a}$时,若函数y=x(1-ax)的最大值为$\frac{1}{12}$,则a=3.

分析 配方得到函数y=-a(x-$\frac{1}{2a}$)2+$\frac{1}{4a}$,当x=$\frac{1}{2a}$时,函数有最大值,即可得到$\frac{1}{12}$=$\frac{1}{4a}$,解得即可.

解答 解:函数y=x(1-ax)=-ax2+x=-a(x-$\frac{1}{2a}$)2+$\frac{1}{4a}$,
∵0<x<$\frac{1}{a}$,
∴$\frac{1}{2a}$∈(0,$\frac{1}{a}$),
∴当x=$\frac{1}{2a}$时,函数有最大值,
∵函数y=x(1-ax)的最大值为$\frac{1}{12}$,
∴$\frac{1}{12}$=$\frac{1}{4a}$,
∴a=3,
故答案为:3.

点评 本题考查了二次函数的性质以及二次函数的最值问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=1,AB=AC=$\sqrt{2}$,D为BC的中点,过点D作DQ平行于AP,且DQ=1.连接QB,QC,QP
(1)证明:AQ⊥平面PBC;
(Ⅱ)求直线BC与平面ABQ所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三条直线l1:4x+y=1,l2:x-y=0,l3:2x-my=3,若l1关于l2对称的直线与l3垂直,则实数m的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,点D在边AB上,|AD|=2|BD|,若$\overrightarrow{CA}$=$\overrightarrow a$,$\overrightarrow{CB}$=$\overrightarrow b$,则$\overrightarrow{CD}$=(  )
A.$\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$B.$\frac{1}{3}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$C.$\frac{3}{5}$$\overrightarrow a$+$\frac{4}{5}$$\overrightarrow b$D.$\frac{4}{5}$$\overrightarrow a$+$\frac{3}{5}$$\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知O为正三角形ABC内一点,且满足$\overrightarrow{OA}$+λ$\overrightarrow{OB}$+(1+λ)$\overrightarrow{OC}$=$\overrightarrow 0$,若△OAB的面积与△OAC的面积比值为3,则λ的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知tan($\frac{π}{4}$+α)=3,计算:
(1)tanα;  
(2)tan2α;       
(3)$\frac{2sinαcosα+3cos2α}{5cos2α-3sin2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π处取得最小值,且满足cos2C-cos2A=2sin($\frac{π}{3}$+C)sin($\frac{π}{3}$-C).
(1)求φ的值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=$\sqrt{2}$,f(A)=$\frac{{\sqrt{3}}}{2}$,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A,B,C的三条对边分别为a,b,c,且b(3b-c)cosA=$\overrightarrow{CA}$•$\overrightarrow{CB}$.
(Ⅰ)求cosA;
(Ⅱ)若△ABC的面积为2$\sqrt{2}$,且AB边上的中线CM的长为2$\sqrt{2}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=${a}_{n}^{2}$+lna3n+1,n∈N*,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案