精英家教网 > 高中数学 > 题目详情
17.如图,三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=1,AB=AC=$\sqrt{2}$,D为BC的中点,过点D作DQ平行于AP,且DQ=1.连接QB,QC,QP
(1)证明:AQ⊥平面PBC;
(Ⅱ)求直线BC与平面ABQ所成角的余弦值.

分析 (I)以A为原点建系,求出$\overrightarrow{AQ}$,$\overrightarrow{BC}$,$\overrightarrow{BP}$的坐标,通过计算$\overrightarrow{AQ}•\overrightarrow{BC}$=0,$\overrightarrow{AQ}•\overrightarrow{BP}$=0得出AQ⊥BC,AQ⊥BP,于是得出AQ⊥平面PBC;
(II)求出平面ABQ的法向量$\overrightarrow{n}$,则直线BC与平面ABQ所成角的正弦值等于|cos<$\overrightarrow{n},\overrightarrow{BC}$>|,利用同角三角函数得到关系得出线面角的余弦值.

解答 解:(I)以A为坐标原点,以AB,AC,AP为坐标轴建立空间直角坐标系,如图所示:
则A(0,0,0),B($\sqrt{2}$,0,0),C(0,$\sqrt{2}$,0),P(0,0,1),Q($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,1).
∴$\overrightarrow{AQ}$=($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,1),$\overrightarrow{BC}$=(-$\sqrt{2}$,$\sqrt{2}$,0),$\overrightarrow{BP}$=(-$\sqrt{2}$,0,1).
∴$\overrightarrow{AQ}•\overrightarrow{BC}$=0,$\overrightarrow{AQ}•\overrightarrow{BP}$=0.
∴AQ⊥BC,AQ⊥BP,
又BC?平面PBC,BP?平面PBC,BC∩BP=B,
∴AQ⊥平面PBC.
(II)$\overrightarrow{AB}$=($\sqrt{2}$,0,0),$\overrightarrow{AQ}$=($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,1),
设平面ABQ的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=0}\\{\overrightarrow{n}•\overrightarrow{AQ}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\sqrt{2}x=0}\\{\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y+z=0}\end{array}\right.$,令z=1,得$\overrightarrow{n}$=(0,-$\sqrt{2}$,1).
∴$\overrightarrow{n}•\overrightarrow{BC}$=-2,|$\overrightarrow{n}$|=$\sqrt{3}$,|$\overrightarrow{BC}$|=2,
∴cos<$\overrightarrow{n},\overrightarrow{BC}$>=$\frac{\overrightarrow{n}•\overrightarrow{BC}}{|\overrightarrow{n}||\overrightarrow{BC}|}$=-$\frac{\sqrt{3}}{3}$,
设直线BC与平面ABQ所成角为θ,则sinθ=|cos<$\overrightarrow{n},\overrightarrow{BC}$>|=$\frac{\sqrt{3}}{3}$,∴cosθ=$\frac{\sqrt{6}}{3}$.
∴直线BC与平面ABQ所成角的余弦值为$\frac{\sqrt{6}}{3}$.

点评 本题考查了线面垂直的判定,线面角的计算,空间向量的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知实数$x,y满足\left\{\begin{array}{l}x-y-1≤0\\ 2x-y-3≥0\end{array}\right.,当z=ax+by(a>0,b>0)$在该约束条件下取到最小值4时,则ab的最大值为(  )
A.2B.4C.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)是定义在R上的增函数,其导函数为f′(x),且满足f(x)+f′(x)(x-1)<0,下面不等式正确的是(  )
A.f(x2)<f(x-1)B.(x-1)f(x)<xf(x+1)C.f(x)>x-1D.f(x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.x>2是x>5的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=3tan(2x+$\frac{π}{4}$)+2的最小正周期T=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z满足z(2-i)=1+7i,则复数z的共轭复数为(  )
A.-1-3iB.-1+3iC.1+3iD.1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}|{lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}$,若关于x的方程f2(x)-bf(x)+1=0有8个不同根,则实数b的取值范围是(2,$\frac{17}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.y=sin(x-$\frac{π}{4}$)的图象的一个对称中心是(  )
A.(-π,0)B.($\frac{π}{2}$,0)C.($\frac{3π}{2}$,0)D.(-$\frac{3π}{4}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.当0<x<$\frac{1}{a}$时,若函数y=x(1-ax)的最大值为$\frac{1}{12}$,则a=3.

查看答案和解析>>

同步练习册答案