精英家教网 > 高中数学 > 题目详情
2.复数z满足z(2-i)=1+7i,则复数z的共轭复数为(  )
A.-1-3iB.-1+3iC.1+3iD.1-3i

分析 把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵z(2-i)=1+7i,
∴$z=\frac{1+7i}{2-i}=\frac{(1+7i)(2+i)}{(2-i)(2+i)}=\frac{-5+15i}{5}=-1+3i$,
∴$\overline{z}=-1-3i$.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx,其中a∈R为常数.
(1)当a=1时,试判断f(x)的单调性;
(2)若g(x)在其定义域内为增函数,求实数a的取值范围;
(3)设函数h(x)=x2-mx+4,当a=2时,若存在x1∈[1,2],?x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)满足f(3x)=x,则实数f(2)=log32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知cosα=-$\frac{3}{5}$,-π<α<0,则tanα等于(  )
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=1,AB=AC=$\sqrt{2}$,D为BC的中点,过点D作DQ平行于AP,且DQ=1.连接QB,QC,QP
(1)证明:AQ⊥平面PBC;
(Ⅱ)求直线BC与平面ABQ所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象,其中A,B两点之间的距离为5,那么$\frac{f(-1)}{2}$=(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sinα+cosα=$\sqrt{2}$,α∈(0,π),则$tan(α-\frac{π}{3})$=(  )
A.$2-\sqrt{3}$B.$-2-\sqrt{3}$C.$-2+\sqrt{3}$D.$2+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.与-527°角终边相同的角的集合是(  )
A.{α|α=k?360°+527°,k∈Z}B.{ α|α=k?360°+157°,k∈Z }
C.{α|α=k?360°+193°,k∈Z }D.{ α|α=k?360°-193°,k∈Z }

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知tan($\frac{π}{4}$+α)=3,计算:
(1)tanα;  
(2)tan2α;       
(3)$\frac{2sinαcosα+3cos2α}{5cos2α-3sin2α}$.

查看答案和解析>>

同步练习册答案