精英家教网 > 高中数学 > 题目详情
6.y=sin(x-$\frac{π}{4}$)的图象的一个对称中心是(  )
A.(-π,0)B.($\frac{π}{2}$,0)C.($\frac{3π}{2}$,0)D.(-$\frac{3π}{4}$,0)

分析 由条件利用正弦函数的图象的对称性,得出结论.

解答 解:对于函数y=sin(x-$\frac{π}{4}$),令x-$\frac{π}{4}$=kπ,k∈Z,可得它的图象的对称中心为(kπ+$\frac{π}{4}$,0),k∈Z.
令k=-1,可得它的图象的一个对称中心为(-$\frac{3π}{4}$,0),
故选:D.

点评 本题主要考查正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.①若α,β是第一象限角,且α>β,则sinα>sinβ;
②函数$y=sin(πx-\frac{π}{2})$是偶函数;
③函数$y=sin(2x-\frac{π}{6})$的一个对称中心是$(\frac{π}{6},0)$;
④若关于x的方程$sin(2x-\frac{π}{6})-a=0(0<a<1)$在区间$(\frac{π}{12},\frac{13π}{12})$内的两个不同的实数根x1,x2,则x1+x2=$\frac{2}{3}$π
其中正确的结论有②④(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=1,AB=AC=$\sqrt{2}$,D为BC的中点,过点D作DQ平行于AP,且DQ=1.连接QB,QC,QP
(1)证明:AQ⊥平面PBC;
(Ⅱ)求直线BC与平面ABQ所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sinα+cosα=$\sqrt{2}$,α∈(0,π),则$tan(α-\frac{π}{3})$=(  )
A.$2-\sqrt{3}$B.$-2-\sqrt{3}$C.$-2+\sqrt{3}$D.$2+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C的对边分别为a,b,c,角B为锐角,且2sinAsinC=sin2B,则$\frac{a+c}{b}$的取值范围为(  )
A.$({1,\sqrt{3}})$B.$({\sqrt{2},\sqrt{3}})$C.$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$D.$({\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.与-527°角终边相同的角的集合是(  )
A.{α|α=k?360°+527°,k∈Z}B.{ α|α=k?360°+157°,k∈Z }
C.{α|α=k?360°+193°,k∈Z }D.{ α|α=k?360°-193°,k∈Z }

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三条直线l1:4x+y=1,l2:x-y=0,l3:2x-my=3,若l1关于l2对称的直线与l3垂直,则实数m的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,点D在边AB上,|AD|=2|BD|,若$\overrightarrow{CA}$=$\overrightarrow a$,$\overrightarrow{CB}$=$\overrightarrow b$,则$\overrightarrow{CD}$=(  )
A.$\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$B.$\frac{1}{3}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$C.$\frac{3}{5}$$\overrightarrow a$+$\frac{4}{5}$$\overrightarrow b$D.$\frac{4}{5}$$\overrightarrow a$+$\frac{3}{5}$$\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A,B,C的三条对边分别为a,b,c,且b(3b-c)cosA=$\overrightarrow{CA}$•$\overrightarrow{CB}$.
(Ⅰ)求cosA;
(Ⅱ)若△ABC的面积为2$\sqrt{2}$,且AB边上的中线CM的长为2$\sqrt{2}$,求b,c的值.

查看答案和解析>>

同步练习册答案