精英家教网 > 高中数学 > 题目详情
设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为常数,且m>0).
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式;
(3)在满足(2)的条件下,求证:数列{bn2}的前n项和Tn
8918
分析:(1)当n≥2时根据an=Sn-Sn-1化简整理得
an
an-1
=
m
1+m
,根据等比数列的定义即可判断数列{an}为等比数列.
(2)由(1)可求得q和a1,进而求得b1,根据bn=f(bn-1)整理得即
1
bn
-
1
bn-1
=1
进而判断数列为等差数列,根据首项和公差,进而可得数列的通项公式.
(3)根据(2)先可得出数列{bn2}的通项公式bn2=
4
(2n-1)2
再根据
4
(2n-1)2
4
2n(2n-2)
=
1
n-1
-
1
n
,通过裂项法求和即可证明原式.
解答:(1)证明:当n=1时,a1=S1=(m+1)-ma1,解得a1=1.
当n≥2时,an=Sn-Sn-1=man-1-man
即(1+m)an=man-1
∵m为常数,且m>0,∴
an
an-1
=
m
1+m
(n≥2)
∴数列{an}是首项为1,公比为
m
1+m
的等比数列.
(2)解:由(1)得,q=f(m)=
m
1+m
,b1=2a1=2.
bn=f(bn-1)=
bn-1
1+bn-1

1
bn
=
1
bn-1
+1
,即
1
bn
-
1
bn-1
=1
(n≥2).
{
1
bn
}
是首项为
1
2
,公差为1的等差数列.
1
bn
=
1
2
+(n-1)•1=
2n-1
2
,即bn=
2
2n-1
(n∈N*).
(3)证明:由(2)知bn=
2
2n-1
,则bn2=
4
(2n-1)2

所以Tn=b12+b22+b32++bn2=4+
4
9
+
4
25
++
4
(2n-1)2

当n≥2时,
4
(2n-1)2
4
2n(2n-2)
=
1
n-1
-
1
n

所以Tn=4+
4
9
+
4
25
++
4
(2n-1)2
<4+
4
9
+(
1
2
-
1
3
)+(
1
3
-
1
4
)++(
1
n-1
-
1
n
)
=
40
9
+
1
2
-
1
n
89
18
点评:本题主要考查了等比关系和等差关系的确定,及数列求和问题.裂项法是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,Sn=(-1)nan-
1
2n
,n∈N+,则a2+a4+a6+…+a100=
1
3
(1-
1
2100
)
1
3
(1-
1
2100
)

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,Sn=λan-1(λ为常数,n=1,2,3,…).
(I)若a3=a22,求λ的值;
(II)是否存在实数λ,使得数列{an}是等差数列?若存在,求出λ的值;若不存在.请说明理由
(III)当λ=2时,若数列{bn}满足bn+1=an+bn(n=1,2,3,…),且b1=
3
2
,令cn=
an
(an+1) bn
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)在等差数列{an},等比数列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4
(Ⅰ)设Sn为数列{an}的前n项和,求anbn和Sn
(Ⅱ)设Cn=
anbnSn+1
(n∈N*),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,Sn=n2+pn,n∈N*,其中p是实数.
(1)若数列{
Sn
}
为等差数列,求p的值;
(2)若对于任意的m∈N*,am,a2m,a4m成等比数列,求p的值;
(3)在(2)的条件下,令b1=a1,bn=a2n-1,其前n项和为Tn,求Tn关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前N项和,且有S1=a,Sn+Sn-1=3n2,n=2,3,4,…
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}是单调递增数列,求a的取值范围.

查看答案和解析>>

同步练习册答案