【题目】已知抛物线
的焦点为
,过点
作斜率为
的直线交抛物线于
两点.
(1)若
,求
的面积;
(2)过点
分别作抛物线
的两条切线
,且直线
与直线
相交于点
,问:点
是否在某条定直线
上?若在,求该定直线
的方程;若不在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为F,直线
与抛物线C相切于点P,过点P作抛物线C的割线PQ,割线PQ与抛物线C的另一交点为Q,A为PQ的中点.过A作y轴的垂线与y轴交于点H,与直线l相交于点N,M为线段AN的中点.
(1)求抛物线C的方程;
(2)在x轴上是否存在一点T,使得当割线PQ变化时,总有
为定值?若存在,求出该点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的方程为
,
是椭圆上的一点,且
在第一象限内,过
且斜率等于-1的直线与椭圆
交于另一点
,点
关于原点的对称点为
.
![]()
(1)证明:直线
的斜率为定值;
(2)求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,
,
,
,
,E是AD的中点,O是AC与BE的交点.将
沿BE折起到图2中
的位置,得到四棱锥
.
![]()
(1)证明:
平面
;
(2)若平面
平面
,求平面
与平面
夹角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为F,直线
与抛物线C相切于点P,过点P作抛物线C的割线PQ,割线PQ与抛物线C的另一交点为Q,A为PQ的中点.过A作y轴的垂线与y轴交于点H,与直线l相交于点N,M为线段AN的中点.
(1)求抛物线C的方程;
(2)求证:点M在抛物线C上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有若干扑克牌:6张牌面分别是2,3,4,5,6,7的扑克牌各一张,先后从中取出两张.若每次取后放回,连续取两次,点数之和是偶数的概率为
;若每次取后不放回,连续取两次,点数之和是偶数的概率为
,则( )
A.
B.
C.
D.以上三种情况都有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四位生物学专家在筛选临床抗病毒药物
,
,
,
时做出如下预测:
甲说:
和
都有效;
乙说:
和
不可能同时有效;
丙说:
有效;
丁说:
和
至少有一种有效.
临床试验后证明,有且只有两种药物有效,且有且只有两位专家的预测是正确的,由此可判断有效的药物是( )
A.
和
B.
和
C.
和
D.
和![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
;直线
的参数方程为
(
为参数),直线
与曲线
分别交于
,
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若点
的极坐标为
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数),设直线
与
的交点为
,当
变化时点
的轨迹为曲线
.
(1)求出曲线
的普通方程;
(2)以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
,点
为曲线
上的动点,求点
到直线
的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com