精英家教网 > 高中数学 > 题目详情
已知函数f(x)的图象与函数g(x)=2x的图象关于直线y=x对称,令h(x)=f(1-|x|),则关于函数h(x)有以下命题:
(1)h(x)的图象关于原点(0,0)对称; (2)h(x)的图象关于y轴对称;
(3)h(x)的最小值为0;       (4)h(x)在区间(-1,0)上单调递增.
正确的是   
【答案】分析:先根据函数f(x)的图象与函数g(x)=2x的图象关于直线y=x对称求出函数f(x)的解析式,然后根据奇偶性的定义进行判定,根据复合函数的单调性进行判定可求出函数的最值,从而得到正确选项.
解答:解:∵函数f(x)的图象与函数g(x)=2x的图象关于直线y=x对称
∴f(x)=log2x
∴h(x)=f(1-|x|)=log2(1-|x|) x∈(-1,1)
而h(-x)=log2(1-|-x|)=h(x)
则h(x)不是奇函数是偶函数,故(1)不正确,(2)正确
该函数在(-1,0)上单调递增,在(0,1)上单调递减
∴h(x)有最大值为0,无最小值
故选项(3)不正确,(4)正确
故答案为:(2)(4)
点评:本题主要考查了反函数,以及函数的奇偶性、单调性和最值,同时考查了奇偶函数图象的对称性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象有且仅有由五个点构成,它们分别为(1,2),(2,3),(3,3),(4,2),(5,2),则f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足a1=λ-2,2an+1=
2n,n为奇数
f(an),n为偶数

(I)求f(n)(n∈N*)的表达式;
(II)设λ=3,求a1+a2+a3+…+a2n
(III)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于原点对称,且当x<0时,f(x)=2x-4,那么当x>0时,f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•焦作一模)已知函数f(x)的图象过点(
π
4
,-
1
2
),它的导函数f′(x)=Acos(ωx+φ)(x∈R)的图象的一部分如图所示,其中A>0,ω>0,|φ|<
π
2
,为了得到函
数f(x)的图象,只要将函数y=sinx(x∈R)的图象上所有的点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于直线x=2对称,且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4,则下列表示大小关系的式子正确的是(  )
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步练习册答案