精英家教网 > 高中数学 > 题目详情

【题目】中,角的对边分别为,已知.

(1)求角

(2)求的面积的最大值.

【答案】(1)(2)2

【解析】

(1)根据二倍角公式得到4cos2C-4cosC+1=0(2cosC-1)2=0,进而得到角C的值;(2)根据余弦定理得到a2+b2-8=ab,根据重要不等式得到ab≤8,代入面积公式即可.

(1)由8sin2 +4sin2C=9得:4(1-cos(A+B))+4sin2C=9

整理得:4cos2C-4cosC+1=0即(2cosC-1)2=0,

所以,cosC=

C =;

(2)由余弦定理可得:cosC==,又c=2

所以,a2+b2-8=ab

又a2+b2≥2ab,得到不等式ab≤8,当且仅当a=b时等号成立,

所以△ABC的面积:SABC=absinC=ab≤2

△ABC的面积的最大值为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,已知.

(1)求角

(2)求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:

(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;

(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:关于的不等式无解;命题:指数函数是增函数.

(1)若命题为真命题,求的取值范围;

(2)若满足为假命题为真命题的实数取值范围是集合,集合,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为,抛物线的焦点为,点是抛物线上到直线距离最小的点.

(1)求点的坐标;

(2)若直线与抛物线交于两点,中点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)指出的周期、振幅、初相、对称轴并写出该函数的单调增区间;

2)说明此函数图象可由上的图象经怎样的变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若函数恰有一个零点,求的取值范围;

(2)当时, 恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案