精英家教网 > 高中数学 > 题目详情
4.给出下列四个命题:
①平行于同一平面的两条直线平行;
②垂直于同一平面的两条直线平行;
③如果一条直线和一个平面平行,那么它和这个平面内的任何直线都平行;
④如果一条直线和一个平面垂直,那么它和这个平面内的任何直线都垂直.
其中正确命题的序号是(  )
A.①②B.①③C.②④D.③④

分析 利用直线与平面平行、垂直的性质逐个判断即可.

解答 解:对于①,平行于同一平面的两条直线的位置关系可能是相交、平行、或异面,故A不正确;
对于②,根据线面垂直的性质定理,可得垂直于同一平面的两条直线平行,故B正确;
对于③,如果一条直线和一个平面平行,它不可能与这个平面内的任何直线都平行,③错误;
对于④,由线面垂直的定义可知④正确.
综上所述,正确命题的序号是②④.
故选:C.

点评 本题考查空间直线与平面平行、垂直的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=$\left\{\begin{array}{l}{x^2}-2(x≥2)\\ 2x(x<2)\end{array}\right.$,若f(a)>a,则实数a的取值范围是a>2或0<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的不同两点,则“y1y2=-p2”是“弦AB过焦点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知关于x的方程2x2-($\sqrt{3}$+1)x+m=0的两根为sin θ、cos θ,θ∈(0,2π),求:
(1)$\frac{sin^2θ}{sinθ-cosθ}$+$\frac{cos^2θ}{cosθ-sinθ}$的值;
(2)m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=sin4ωx-cos4ωx(ω>0)的最小正周期是π,则ω=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线的极坐标方程为3ρcosθ-4ρsinθ=3,求点P(2,$\frac{3π}{2}$)到这条直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知f(x-2)=3x-5,求f(x);
(2)已知二次函数f(x)的图象过点(0,4),对任意x满足f(3-x)=f(x),且有最小值$\frac{7}{4}$,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若以连续两次骰子分别得到的点数m,n作为点P的横、纵坐标,则点P在直线x+y=5左下方的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知焦点在y轴上的椭圆$\frac{x^2}{m}+\frac{y^2}{5}=1$的离心率$e=\frac{{\sqrt{10}}}{5}$,则m的值为3.

查看答案和解析>>

同步练习册答案