精英家教网 > 高中数学 > 题目详情

【题目】已知等腰△ABC中,AB=BC,P在底边AC上的任一点,PE⊥AB于点E,PF⊥BC于点F,CD⊥AB于点D.求证:CD=PE+PF.

【答案】见解析.

【解析】试题分析:以的中点为原点,轴建立平面直角坐标系,设

求得直线的方程,取底边上一点,求得,即可作出证明.

试题解析:

如图所示,以AC的中点为原点,AC为x轴建立平面直角坐标系,设A(a,0),B(0,b),C(-a,0),其中a>0,b>0.

则直线AB的方程为bx+ay-ab=0,

直线BC的方程为bx-ay+ab=0.

设底边AC上任意一点为P(x,0)(-a≤x≤a),

则|PE|=

|PF|=

|CD|=

∵|PE|+|PF|==|CD|,∴CD=PE+PF.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣4x+4,
(1)求f(x)的单调区间;
(2)求f(x)在[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)= ax+b.
(1)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;
(2)若φ(x)= ﹣f(x)在[1,+∞)上是减函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若存在实数a、b、c、d,满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则abcd的取值范围是(
A.(16,21)
B.(16,24)
C.(17,21)
D.(18,24)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,设命题p:函数y=ax在R上单调增;命题q:不等式ax2﹣ax+1>0对任意实数x恒成立.若p∧q假,p∨q真,则a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和所支出的维修费用y(单位:万元)有如下的统计资料:

使用年限x/年

2

3

4

5

6

维修费用y/万元

2.2

3.8

5.5

6.5

7.0

若由资料知y对x呈线性相关关系.试求:

(1)回归方程x+的系数.

(2)使用年限为10年时,试估计维修费用是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?
(2)设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(m1,2)B(1,1)C(3m2m1)

(1)ABC三点共线,求实数m的值;

(2)ABBC,求实数m的值.

查看答案和解析>>

同步练习册答案