精英家教网 > 高中数学 > 题目详情
10.在三棱锥P-ABC中,PA,PB,PC两两互相垂直,且AB=4,AC=5,则BC的取值范围是(3,$\sqrt{41}$).

分析 如图设PA、PB、PC的长分别为a、b、c,BC=m.由PA,PB,PC两两互相垂直,得a2+b2=16,a2+c2=25,
b2+c2=m2⇒m2=41-2a2,且a2<16,a2<25⇒-2a2>-32,⇒-2a2>-50⇒⇒-2a2>-32⇒m2=41-2a2>9
在△ABC中,$\left\{\begin{array}{l}{m<5+4}\\{4<5+m}\\{5<4+m}\end{array}\right.$⇒3<m<$\sqrt{41}$.

解答 解:如图设PA、PB、PC的长分别为a、b、c,BC=m.∵PA,PB,PC两两互相垂直,
∴a2+b2=16,a2+c2=25,b2+c2=m2⇒m2=41-2a2
a2<16,a2<25⇒-2a2>-32,⇒-2a2>-50⇒⇒-2a2>-32⇒m2=41-2a2>9
⇒m>3
在△ABC中,$\left\{\begin{array}{l}{m<5+4}\\{4<5+m}\\{5<4+m}\end{array}\right.$⇒3<m<$\sqrt{41}$
故答案为(3,$\sqrt{41}$)

点评 本题考查了空间位置关系,关键是把空间问题转化为平面问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=a(x-2)ex+lnx+$\frac{1}{x}$存在唯一的极值点,且此极值大于0,则(  )
A.0≤a<$\frac{1}{e}$B.0≤a<$\frac{1}{{e}^{2}}$C.-$\frac{1}{e}$<a<$\frac{1}{{e}^{2}}$D.0≤a<$\frac{1}{e}$或a=-$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)={a^x}+\frac{1-t}{a^2}(a>0,a≠1)$是定义域为R上的奇函数.
(1)求实数t的值;
(2)若f(1)>0,不等式f(x2+bx)+f(4-x)>0在x∈R上恒成立,求实数b的取值范围;
(3)若$f(1)=\frac{3}{2}$且$h(x)={a^{2x}}+\frac{1}{{{a^{2x}}}}-2mf(x)$[1,+∞)上最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等比数列{an}的前n项和为Sn,且S4=a5-a1
(1)求数列{an}的公比q的值;
(2)记bn=log2an+1,数列{bn}的前n项和为Tn,若T4=2b5,求数列a1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱柱ABC-A1B1C1中,AB⊥平面BCC1B1,$∠BC{C_1}=\frac{π}{3},AB=B{B_1}=2,BC=1,D$为CC1的中点.
(1)求证:DB1⊥平面ABD;
(2)求点A1到平面ADB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.正项数列{an}满足a1=$\frac{1}{4}$,a1+a2+…+an=2anan+1,则通项an=$\frac{n}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.
(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;
(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;
(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设复数z满足z+i=i(2-i),则$\overline{z}$=(  )
A.1+3iB.-1+3iC.1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=2,AB=2$\sqrt{2}$.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求锐二面角D-A1C-E的余弦值.

查看答案和解析>>

同步练习册答案