分析 (1)先根据条件判断A、B都是锐角,利用同角三角函数的基本关系求出cosA和sinB的值,由正弦定理即可求得a的值;
(2)利用(1)的结论,由cosC=-cos(A+B)=-cosAcosB+sinAsinB运算求得结果.
解答 (本小题满分12分)
解:(1)△ABC中,已知sinA=$\frac{5}{13}$,cosB=$\frac{4}{5}$,
则sinB=$\frac{3}{5}$,且B为锐角;
故由正弦定理可得:a=$\frac{bsinA}{sinB}$=$\frac{3×\frac{5}{13}}{\frac{3}{5}}$=$\frac{25}{13}$…5分
(2)由(1)可得sinB>sinA,则B>A;
故A、B都是锐角,且cosA=$\frac{12}{13}$,sinB=$\frac{3}{5}$,
则cosC=-cos(A+B)=-cosA cosB+sinA sinB=-$\frac{48}{65}$+$\frac{15}{65}$=-$\frac{33}{65}$…12分
点评 本题考查同角三角函数的基本关系,两角和差的余弦公式的应用,求出cosA和sinB 的值,是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2,5,8 | B. | {2,5,8} | C. | 5 | D. | {5} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com