精英家教网 > 高中数学 > 题目详情
(Ⅰ)求证:
3
+
7
<2
5

(Ⅱ)已知a>0,b>0且a+b>2,求证:
1+b
a
1+a
b
中至少有一个小于2.
考点:不等式的证明
专题:不等式
分析:(Ⅰ)利用了分析法,和两边平方法,
(Ⅱ)利用了反证法,假设:
1+b
a
1+a
b
都不小于2,则
1+b
a
≥2,
1+a
b
≥2,推得即a+b≤2,这与已知a+b>2矛盾,故假设不成立,从而原结论成立.
解答: (Ⅰ)证明:因为
3
+
7
2
5
都是正数,所以为了证明
3
+
7
<2
5

只要证 (
3
+
7
2<(2
5
2
只需证:10+2
21
<20,
即证:2
21
<10,
即证:
21
<5,
即证:21<25,
因为21<25显然成立,所以原不等式成立.
(Ⅱ)证明:假设:
1+b
a
1+a
b
都不小于2,则
1+b
a
≥2,
1+a
b
≥2,
∵a>0,b>0,
∴1+b≥2a,1+a≥2b,
∴1+b+1+a≥2(a+b)
即 a+b≤2
这与已知a+b>2矛盾,故假设不成立,从而原结论成立.
点评:本题主要考查了推理论证的两种方法分析法和反证法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则A∪B=(  )
A、{2}
B、{2,3,4}
C、{1,2,3,4}
D、{0,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
4x
3x2+3
(x∈(0,2)),g(x)=
1
2
x2-lnx-a

(1)求f(x)的值域;
(2)若?x∈[1,2]使得g(x)=0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x+
3
sin2x.
(1)求f(x)的最小正周期和单调递增区间;
(2)若关于x的方程f(x)-m=2在x∈[-
π
4
π
4
]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥P-ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点.
(1)证明:平面PBE⊥平面PAC
(2)试在BC上找一点F,使AD∥平面PEF?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sin(ωx+
π
4
)•cos(ωx+
π
4
)-sin(2ωx+π)(ω>0),且函数f(x)的最小正周期为π.
(1)求函数f(x)的解析式;
(2)若将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,
π
2
]上的最大值和最小值,并指出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校新生入学时该校选取甲、乙两个高一新班(均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)分别采用A,B两种方法教学,为了解A,B两种教学方法的效果,现随机抽取甲、乙两班各20名学生的市统考数学成绩(单位:分)如下:
甲班:58,57,59,92,71,82,65,82,74,67,74,67,68,85,83,78,81,69,73;
乙班:64,73,80,81,90,82,84,91,69,78,83,89,97,94,68,82,69,76,81,98.
(1)分别完成甲、乙两班各20名学生的市统考数学成绩的频率分布表,并作出频率分布直方图,根据频率分布直方图判断哪个班的优秀率高?(成绩大于等于80分为优秀)
甲班
分组频数频率
[90,100]
 
 
[80,90)
 
 
[70,80)
 
 
[60,70)
 
 
[50,60)
 
 
乙班
分组频数频率
[90,100]
 
 
[80,90)
 
 
[70,80)
 
 
[60,70)
 
 
[50,60)
 
 

(2)现从甲、乙两班各20名市统考数学成绩不低于85分的学生中各抽出2人,若成绩不低于90分的学生奖励100元,否则奖励50元,求奖金总数不少于310元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
x
2
+
π
4
)cos(
x
2
-
π
4
)-sin2
x
2
,先将f(x)的图象向右平移
π
4
个单位,再将所得图象上的所有点的横坐标缩短到原来的
1
2
,纵坐标伸长到原来的
2
倍,得到g(x)的图象.
(1)求f(x)的最小正周期;
(2)若x∈[0,
π
4
],求f(x)的值域;
(3)若F(x)=2af(x)+
a
2
g(x)+1,x∈[0,
π
4
],a≠0,试求F(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且AD=
2
PA=
2
PD.
(Ⅰ)求证:PA⊥CD;
(Ⅱ)求四棱锥P-ABCD的体积VP-ABCD

查看答案和解析>>

同步练习册答案