精英家教网 > 高中数学 > 题目详情
已知F1(-2,0),F2(2,0),点M满足|MF1|-|MF2|=2求点M的轨迹方程.
分析:由|MF1|-|MF2|=2<|F1F2|知,点M的轨迹是以F1、F2为焦点的双曲线,同时|MF1|>|MF2|,可推断出 动点M的轨迹,是双曲线右支,求出a,b,c,即可写出点M的轨迹方程.
解答:解:
由|MF1|-|MF2|=2<|F1F2|知,点M的轨迹是以F1、F2为焦点的双曲线右支,
由c=2,a=1,b2=3,
故轨迹E的方程为x2-
y 2
3
=1
,(x≥1)
点评:本题主要考查了双曲线的标准方程.考查了学生分析问题和解决问题的能力.易错点是忽视条件:“|MF1|-|MF2|=2”导致出错,以为是整个双曲线.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.
(1)求轨迹E的方程;
(2)若直线l过点F2且与轨迹E交于P、Q两点.无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.求轨迹E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0)是椭圆C的两个焦点,过F1的直线与椭圆C的两个交点为M,N,且|MN|的最小值为6.
(I)求椭圆C的方程;
(II)设A,B为椭圆C的长轴顶点.当|MN|取最小值时,求∠AMB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E;
(Ⅰ)求轨迹E的方程;
(Ⅱ)若直线l过点F2且与轨迹E交于P、Q两点;
①设点M(m,0),问:是否存在实数m,使得直线l绕点F2无论怎样转动,都有
MP
MQ
=0
成立?若存在,求出实数m的值;若不存在,请说明理由;
②过P、Q作直线x=
1
2
的垂线PA、QB,垂足分别为A、B,记λ=
|PA|+|QB|
|AB|
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-
2
,0),F2
2
,0),点P满足|PF1|+|PF2|=2
3
,记点P的轨迹为E
(Ⅰ)求轨迹E的方程;
(Ⅱ)设轨迹E与直线y=kx+m(k≠0)相交于不同的两点M,N.已知A(0,-1),当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

同步练习册答案