精英家教网 > 高中数学 > 题目详情
15.过点(1,-1)的圆x2+y2-2x-4y-20=0的最大弦长与最小弦长的和为(  )
A.17B.18C.19D.20

分析 圆x2+y2-2x-4y-20=0的圆心C(1,2),半径r=5,设点A(1,-1),|AC|=3<r,从而点A在圆内,进而最大弦长为2r=10,最小弦长为:2$\sqrt{{r}^{2}-|AC{|}^{2}}$.由此能求出结果.

解答 解:圆x2+y2-2x-4y-20=0的圆心C(1,2),半径r=$\frac{1}{2}\sqrt{4+16+80}$=5,
设点A(1,-1),|AC|=$\sqrt{(1-1)^{2}+(2+1)^{2}}$=3<r,
∴点A在圆内,∴最大弦长为2r=10,
最小弦长为:2$\sqrt{{r}^{2}-|AC{|}^{2}}$=2$\sqrt{25-9}$=8.
∴过点(1,-1)的圆x2+y2-2x-4y-20=0的最大弦长与最小弦长的和为:10+8=18.
故选:B.

点评 本题考查经过圆内一点的最大弦长与最小弦长的和的求法,考查圆、直线方程、两点间距离公式等基础知识,考查数据处理能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.(1)已知$g(x)=\sqrt{x}$,求曲线g(x)在点(4,2)处的切线方程;
(2)已知函数f(x)=x3-3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,是偶函数且在区间(0,1)上单调递增为的是(  )
A.y=ln(x+1)B.y=$\frac{1}{2}$x2+cosxC.y=x4-3x2D.y=3x+sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2017)=(  )
A.337B.338C.1678D.2012

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=$\frac{{x}^{2}}{2}$-alnx
(1)求函数y=f(x)的单调区间和极值;
(2)若函数f(x)在区间(1,e2]内恰有两个零点,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,函数y=f(x)的图象在点P处的切线方程是y=-x+5,则f(3)+f'(3)=(  )
A.$\frac{1}{2}$B.1C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}为公差不为0的等差数列,Sn为其前n项和,a5和a9的等差中项为13,且a2•a5=a1•a14.令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,数列{bn}的前n项和为Tn
(Ⅰ)求Tn
(Ⅱ)是否存在不同的正整数m,n,使得T2,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由;
(Ⅲ)若cn=$\frac{{{3^{a_n}}}}{{{3^{a_n}}+2}}$,是否存在互不相等的正整数m,n,t,使得m,n,t成等差数列,且cm,cn,ct成等比数列?若存在,求出所有的m,n,t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin$\frac{12π}{7}$),b=f(cos$\frac{5π}{7}$),c=f(tan$\frac{2π}{7}$),则(  )
A.a>b>cB.c>a>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,输出的S值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案