分析 (1)求出函数的导数,计算g′(4),求出切线方程即可;
(2)设出切点为M(x0,y0),表示出切线方程,求出切点坐标,从而求出切线方程即可.
解答 解:(1)∵g(x)=$\sqrt{x}$,∴g′(x)=$\frac{1}{2\sqrt{x}}$,∴g′(4)=$\frac{1}{4}$,
∴曲线g(x)在点(4,2)处的切线方程为y-2=$\frac{1}{4}$(x-4),即y=$\frac{1}{4}$x+1;
(2)曲线方程为y=x3-3x,点A(0,16)不在曲线上,
设切点为M(x0,y0),则点M的坐标满足y0=x03-3x0,
因f′(x0)=3(x02-1),故切线的方程为y-y0=3(x02-1)(x-x0),
将A(0,16)代入切线方程化简得x03=-8,解得x0=-2.
所以切点为M(-2,-2),切线方程为9x-y+16=0.
点评 本题考查了切线方程问题,考查导数的应用以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | P(3)=3 | B. | P(5)=1 | C. | P(2003)>P(2005) | D. | P(2008)<P(2010) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{2π}{3}$个长度单位 | B. | 向左平移$\frac{π}{12}$个长度单位 | ||
| C. | 向左平移$\frac{π}{3}$个长度单位 | D. | 向右平移$\frac{π}{12}$个长度单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄x岁 | 20 | 30 | 40 | 50 |
| 周均学习成语知识时间y(小时) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com