精英家教网 > 高中数学 > 题目详情
20.如图所示,函数y=f(x)的图象在点P处的切线方程是y=-x+5,则f(3)+f'(3)=(  )
A.$\frac{1}{2}$B.1C.2D.0

分析 在点P处的斜率就是在该点处的导数,f′(3)就是切线y=-x+5的斜率,问题得解.

解答 解:在点P处的斜率就是在该点处的导数,
f′(3)就是切线y=-x+5的斜率,即f′(3)=-1,
∵f(3)=-3+5=2,
∴f(3)+f'(3)=2-1=1,
故选:B.

点评 本题考查了导数的几何意义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.中央电视台为了解该卫视《朗读者》节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示其中一个数字被污损,
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.
(2)随着节目的播出,极大激发了观众对朗读以及经典的阅读学习积累的热情,从中获益匪浅,现从观看节目的观众中随机统计了4位观众的周均阅读学习经典知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如表所示):
年龄x岁20304050
周均学习成语知识时间y(小时)2.5344.5
由表中数据,试求线性回归方程y=bx+a,并预测年龄为50岁观众周均学习阅读经典知识的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用红、黄、蓝三种颜色去涂图中标号为1,2,…9的9个小正方形,使得每行中各小格颜色不同,且相邻两行上下两格颜色不同.则符合条件的所有涂法共有(  )种.
123
456
789
A.24B.36C.72D.108

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-x2-1,x∈R
(1)求函数f(x)的图象在点(0,f(0))处的切线方程;
(2)当x∈R时,求证:f(x)≥-x2+x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过点(1,-1)的圆x2+y2-2x-4y-20=0的最大弦长与最小弦长的和为(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知各项都为正数的等比数列{an}满足a5=2a4+3a3,存在两项am,an使得$\sqrt{{a_m}•{a_n}}=27{a_1}$,则$\frac{1}{m}+\frac{4}{n}$的最小值为
$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:(1)$({C_{100}^2+C_{100}^{97}})÷A_{101}^3$;
(2)$C_3^3+C_4^3+…+C_{10}^3$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x+α的最大值与最小值之和为-2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求使得函数f(x)≥0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,$a=2\sqrt{3}$,b=3,$cosA=-\frac{1}{3}$.
(Ⅰ)求sinB;
(Ⅱ)设BC的中点为D,求中线AD的长.

查看答案和解析>>

同步练习册答案