精英家教网 > 高中数学 > 题目详情
9.甲、乙两名同学互不影响地在同一位置投球,每次命中率分别为$\frac{1}{2}$与$\frac{1}{3}$.若甲、乙两人各投球1次,则恰有一人投中的概率为$\frac{1}{2}$.

分析 恰有一人投中是指甲中乙不中或甲不中乙中,由此利用相互独立事件概率加法公式和互斥事件概率乘法公式能求出恰有一人投中的概率.

解答 解:∵甲、乙两名同学互不影响地在同一位置投球,每次命中率分别为$\frac{1}{2}$与$\frac{1}{3}$,
∴甲、乙两人各投球1次,则恰有一人投中的概率为:
p=$\frac{1}{2}×(1-\frac{1}{3})+(1-\frac{1}{2})×\frac{1}{3}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率加法公式和互斥事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.对于函数f(x)=sinx,g(x)=cosx,h(x)=x+$\frac{π}{3}$,有如下五个命题:
①f(x)-g(x)的最大值为$\sqrt{2}$;
②将f(x)的图象向右平移$\frac{π}{2}$个单位可得g(x)的图象;.
③f[h(x)]在区间[-$\frac{π}{2}$,0]上是增函数;
④点($\frac{2π}{3}$,0)是函数f[h(x)]图象的一个对称中心;
⑤函数g[h(x)]的图象上相邻的两条对称轴之间的距离是2π.
其中真命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,内角A、B、C所对的边分别为a、b、c,且$\frac{2a+b}{c}$=$\frac{cos(A+C)}{cosC}$,c=2,则△ABC面积的最大值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{3}{4}$C.$\frac{{3\sqrt{3}}}{4}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|y=ln(1-x)},集合N={y|y=3x,x∈R},则M∩N=(  )
A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中角A,B,C所对的边长分别为a,b,c,且sinAcosC+$\frac{1}{2}$sinC=sinB.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC周长的最大值及相应的b,c值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.根据如表样本数据,
x345678
y42.5-0.5-1-2-3
得到了回归直线方程:$\widehat{y}$=bx+a,则(  )
A.a>0,b>0B.a<0,b>0C.a>0,b<0D.a<0,b<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查.调查结果如表:
阅读名著的本数12345
男生人数31213
女生人数13312
(Ⅰ)试根据上述数据,求这个班级女生阅读名著的平均本数;
(Ⅱ)若从阅读5本名著的学生中任选2人交流读书心得,求选到男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|(x-1)(x-2)2=0},则集合A中元素的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,且AB=BC=1,PA=$\sqrt{2}$,O为线段PC的中点,
(1)证明:BC⊥平面PAB;
(2)求直线PC与平面PAB所成的角;
(3)求三棱锥B-AOC的体积.

查看答案和解析>>

同步练习册答案