精英家教网 > 高中数学 > 题目详情
1.已知实数x>0,y>0,z>0,证明:($\frac{1}{x}$+$\frac{2}{y}$+$\frac{3}{z}$)($\frac{x}{2}$+$\frac{y}{4}$+$\frac{z}{6}$)≥$\frac{9}{2}$.

分析 运用柯西不等式可得($\frac{1}{x}$+$\frac{2}{y}$+$\frac{3}{z}$)($\frac{x}{2}$+$\frac{y}{4}$+$\frac{z}{6}$)≥($\sqrt{\frac{1}{x}•\frac{x}{2}}$+$\sqrt{\frac{2}{y}•\frac{y}{4}}$+$\sqrt{\frac{3}{z}•\frac{z}{6}}$)2,化简整理即可得证.

解答 证明:由x>0,y>0,z>0,
($\frac{1}{x}$+$\frac{2}{y}$+$\frac{3}{z}$)($\frac{x}{2}$+$\frac{y}{4}$+$\frac{z}{6}$)≥($\sqrt{\frac{1}{x}•\frac{x}{2}}$+$\sqrt{\frac{2}{y}•\frac{y}{4}}$+$\sqrt{\frac{3}{z}•\frac{z}{6}}$)2
=($\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$)2=$\frac{9}{2}$.
当且仅当x=$\frac{y}{2}$=$\frac{z}{3}$时,取得等号.
故原不等式成立.

点评 本题考查不等式的证明,注意运用柯西不等式,考查运算和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若α∈($\frac{π}{2}$,π),且5cos2α=$\sqrt{2}$sin($\frac{π}{4}$-α),则tanα等于(  )
A.-$\frac{4}{3}$B.-$\frac{1}{3}$C.-$\frac{3}{4}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点A为抛物线C:x2=4y上的动点(不含原点),过点A的切线交x轴于点B,设抛物线C的焦点为F,则∠ABF为(  )
A.锐角B.直角C.钝角D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l:3x-4y+m=0过点(-1,2),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线G的方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),正方形OABC内接于曲线G,且O,A,B,C依逆时针方向排列,A在极轴上.
(Ⅰ)写出直线l的参数方程和曲线G的直角坐标方程;
(Ⅱ)若点P为直线l上任意一点,求PO2+PA2+PB2+PC2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程是ρsin2θ-8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).
(1)写出曲线C的直角坐标方程和直线l的参数方程;
(2)设点Q和点G的极坐标分别为(2,$\frac{3π}{2}$),(2,π),若直线l经过点Q,且与曲线C相交于A,B两点,求△GAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A,B是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右顶点,F为其右焦点,在直线x=4上任取一点P(点P不在x轴上),连结PA,PF,PB.若半焦距c=1,且2kPF=kPA+kPB
(1)求椭圆C的方程;
(2)若直线PF交椭圆于M,N,记△AMB、△ANB的面积分别为S1、S2,求$\frac{S_1}{S_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以点A(-5,4)为圆心,且与y轴相切的圆的方程是(  )
A.(x+5)2+(y-4)2=25B.(x-5)2+(y+4)2=16C.(x+5)2+(y-4)2=16D.(x-5)2+(y+4)2=25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知五个数2,a,m,b,8构成一个等比数列,则圆锥曲线$\frac{x^2}{m}$+$\frac{y^2}{2}$=1的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$或$\sqrt{3}$D.$\frac{{\sqrt{2}}}{2}$或$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c∈R+,求证:
(1)a5≥a4+a-1;
(2)$\frac{2{a}^{2}}{b+c}$+$\frac{2{b}^{2}}{c+a}$+$\frac{2{c}^{2}}{a+b}$≥a+b+c.

查看答案和解析>>

同步练习册答案