精英家教网 > 高中数学 > 题目详情
11.已知a,b,c∈R+,求证:
(1)a5≥a4+a-1;
(2)$\frac{2{a}^{2}}{b+c}$+$\frac{2{b}^{2}}{c+a}$+$\frac{2{c}^{2}}{a+b}$≥a+b+c.

分析 (1)运用作差比较法,结合因式分解,平方非负的概念即可得证;
(2)运用基本不等式,可得$\frac{b+c}{2}$+$\frac{2{a}^{2}}{b+c}$≥2a,$\frac{c+a}{2}$+$\frac{2{b}^{2}}{c+a}$≥2b,$\frac{a+b}{2}$+$\frac{2{c}^{2}}{a+b}$≥2c,累加即可得证.

解答 证明:(1)由a>0,a5-(a4+a-1)=(a5-a)-(a4-1)
=a(a4-1)-(a4-1)=(a-1)(a4-1)
=(a-1)2(a+1)(a2+1)≥0,
可得a5≥a4+a-1,(当a=1时取得等号);
(2)由a,b,c>0,$\frac{b+c}{2}$+$\frac{2{a}^{2}}{b+c}$≥2$\sqrt{\frac{b+c}{2}•\frac{2{a}^{2}}{b+c}}$=2a,
同理可得$\frac{c+a}{2}$+$\frac{2{b}^{2}}{c+a}$≥2b,
$\frac{a+b}{2}$+$\frac{2{c}^{2}}{a+b}$≥2c,
上面三式相加,可得(a+b+c)+($\frac{2{a}^{2}}{b+c}$+$\frac{2{b}^{2}}{c+a}$+$\frac{2{c}^{2}}{a+b}$)≥2a+2b+2c,
即为$\frac{2{a}^{2}}{b+c}$+$\frac{2{b}^{2}}{c+a}$+$\frac{2{c}^{2}}{a+b}$≥a+b+c,(当a=b=c时,等号成立).

点评 本题考查不等式的证明,注意运用作差比较法和基本不等式,考查累加法以及推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知实数x>0,y>0,z>0,证明:($\frac{1}{x}$+$\frac{2}{y}$+$\frac{3}{z}$)($\frac{x}{2}$+$\frac{y}{4}$+$\frac{z}{6}$)≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$;
(1)设z=4x-3y,求z的最大值;
(2)设z=$\frac{y}{x}$,求z的最小值;
(3)设z=x2+y2,求z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.N为圆x2+y2=1上的一个动点,平面内动点M(x0,y0)满足|y0|≥1且∠OMN=30°(O为坐标原点),则动点M运动的区域面积为(  )
A.$\frac{8π}{3}$-2$\sqrt{3}$B.$\frac{4π}{3}$-$\sqrt{3}$C.$\frac{2π}{3}$+$\sqrt{3}$D.$\frac{4π}{3}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知(x+$\frac{{\root{3}{a}}}{x}$)6的展开式中,常数项为40,则$\int_0^1{x^a}$dx=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.根据下列条件,分别求A∩B,A∪B:
(1)A={x|x≥0},B={x|x≤0};
(2)A={x|x≥0},B={x|x<2};
(3)A={x|x≥0},B={x|x>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某班数学课外兴趣小组共有10人,6名男生,4名女生,其中1名为组长,现要选3人参加数学竞赛,分别求出满足下列各条件的不同选法数:
(1)要求组长必须参加;
(2)要求选出的3人中至少有1名女生;
(3)要求选出的3人中至少有1名女生和1名男生.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=$\sqrt{{x}^{2}-4}$的定义域是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线3x+4y+10=0和圆$\left\{{\begin{array}{l}{x=2+5cosθ}\\{y=1+5sinθ}\end{array}}\right.$的位置关系是(  )
A.相切B.相离C.相交但不过圆心D.相交且过圆心

查看答案和解析>>

同步练习册答案